Longitudinal clustering of health behaviours and their association with multimorbidity in older adults in England: A latent class analysis

Alisha Suhag $\oplus^{1 *}$, Thomas L. Webb ${ }^{\circ}{ }^{\mathbf{2}}$, John Holmes ${ }^{\mathbf{3}}$

1 Healthy Lifespan Institute, School of Health and Related Research, University of Sheffield, Sheffield, United
Kingdom, 2 Department of Psychology, University of Sheffield, Sheffield, United Kingdom, 3 School of
Health and Related Research, University of Sheffield, Sheffield, United Kingdom

Why multimorbidity matters

Prevalence

Approximately 29.5-40.5\% of adults in primary care have multimorbidity in the UK ${ }^{1}$

Inequitable

Occurs 10-15 years earlier in people living in deprived areas compared to affluent areas ${ }^{3}$

Costly

Healthcare use among individuals with multimorbidity is 2.56 times higher than people without multimorbidity ${ }^{2}$

Complex

Involves multiple medical specialties and tiers of care; overlaps with frailty and polypharmacy

10-year age group

$— \geq 80-70-79-60-69-50-59-40-49-30-39-18-29$

Key risk factors

Biological factors

- Age
- Genetic factors
- Existing conditions
- Metabolic factors

Sociodemographic factors

- Relative deprivation

Health risk behaviours

- Smoking
- Poor Nutrition
- Alcohol consumption
- Physical inactivity

SNAP risk behaviours

- Risk behaviours evolve over time
- Risk behaviours tend to cluster
- Their health effects tend to compound

But...

- Epidemiological studies use lifestyle indices to measure risk behaviours or examine specific combinations.
- Clusters have mostly been studied in younger age groups and using cross-sectional data
- Limited research between risk behaviour clusters and multimorbidity

How do health-risk behaviours cluster over time in older adults and how are these clusters associated with multimorbidity?

English Longitudinal Study of Ageing (ELSA)

Objective 2 How does membership in different behavioural clusters vary by sociodemographic characteristics?

Objective 3 Which, if any, behavioural clusters are prospectively associated with multimorbidity

Identify clusters - using

 RMLCA*

Socio-demographics

Associations with multimorbidity

Low risk (13.4\%)

High-risk smokers (10.9\%)

Low risk yet inactive (16.8\%)

Poor diet and inactive (12.9\%)

Alcohol consumption	Physical activity	 Vegetables

Low risk yet heavy drinkers (11.4\%)

Smoking

Non-smoker
Smoker

Alcohol consumption
Abstainer
Moderate
Hazardous
Harmful

Physical activity
High
Moderate
Low Sedentary

Fruit \& vegetable intake
\square $>=5 /$ day
<5/day

Table 1. Demographics and odds ratios from multinomial logistic regressions examining the association between socio-demographic predictors and cluster membership

Socio-demographic characteristics	Low risk$(\mathrm{n}=13.4 \%)$		Low risk yet inactive ($\mathrm{n}=16.8 \%$)		Low risk yet heavy drinkers$(\mathrm{n}=11.4 \%)$		Abstainers but inactive$(\mathrm{n}=20 \%)$		Poor diet and inactive$(\mathrm{n}=12.9 \%)$		Inactive, heavy drinkers ($\mathrm{n}=14.5 \%$)		High-risk smokers$(\mathrm{n}=10.9 \%)$	
	(Ref. class)													
				OR [95\% C.I.]										
$\begin{aligned} & \text { Age } \\ & \text { (s.d.) } \end{aligned}$	$\begin{aligned} & 61.42 \\ & (8.4) \end{aligned}$	Ref.	$\begin{aligned} & 65.30 \\ & (12) \end{aligned}$	1.06 [1.04, 1.08]	$\begin{aligned} & 60.31 \\ & (7.7) \end{aligned}$	0.97 [0.96, 1.00]	$\begin{aligned} & 66.70 \\ & (13.2) \end{aligned}$	1.07 [1.05, 1.09]	$\begin{aligned} & 65.00 \\ & (13.5) \end{aligned}$	1.06 [1.03, 1.08]	$\begin{aligned} & 62.97 \\ & (11.3) \end{aligned}$	1.03 [1.01, 1.05]	$\begin{aligned} & 60.52 \\ & (8.7) \end{aligned}$	0.97 [0.95, 0.99]
Sex														
Male	45.6\%	Ref	35.5\%	Ref	67.5\%	Ref	25.4\%	Ref	51.6\%	Ref	69.1\%	Ref	45.2\%	Ref
Female	54.4\%	Ref	64.5\%	1.49 [1.10, 2.02]	32.5\%	0.40 [0.29, 0.55]	74.6\%	2.31 [1.68, 3.17]	48.4\%	0.77 [0.55, 1.06]	30.9\%	0.37 [0.27, 0.49]	54.8\%	1.02 [0.75, 1.40]
Education Level														
No qualifications	15.5\%	Ref	23.4\%	Ref	11.3\%	Ref	43.9\%	Ref	30.1\%	Ref	13.4\%	Ref	40.5\%	Ref
Intermediate	58.1\%	Ref	61.4\%	0.89 [0.57, 1.39]	52.9\%	0.90 [0.53, 1.53]	50.6\%	0.56 [0.38, 0.83]	60.9\%	0.76 [0.49, 1.18]	62.7\%	1.24 [0.78, 1.96]	51.2\%	0.44 [0.29, 0.66]
Degree or higher	26.4\%	Ref	15.2\%	0.52 [0.30, 0.88]	35.8\%	0.91 [0.51, 1.63]	5.5\%	0.23 [0.13, 0.40]	9.0\%	0.32 [0.18, 0.60]	23.9\%	0.84 [0.50, 1.42]	8.3\%	0.21 [0.12, 0.36]
Wealth														
First tertile	15.8\%	Ref	25.0\%	Ref	9.5\%	Ref	47.8\%	Ref	37.2\%	Ref	20.6\%	Ref	50.9\%	Ref
Second tertile	35.5\%	Ref	37.2\%	0.67 [0.43, 1.03]	27.9\%	1.17 [0.67, 2.06]	33.9\%	0.38 [0.26, 0.57]	41.2\%	0.53 [0.34, 0.81]	30.3\%	0.63 [0.40, 0.97]	30.5\%	0.33 [0.22, 0.49]
Third tertile	48.7\%	Ref	37.8\%	0.48 [0.31, 0.75]	62.6\%	1.71 [0.99, 2.94]	18.3\%	0.18 [0.12, 0.28]	21.6\%	0.22 [0.14, 0.36]	49.1\%	0.71 [0.47, 1.09]	18.6\%	0.18 [0.11, 0.28]
Occupation-Self														
Routine/manual	33.3\%	Ref	36.8\%	Ref	18.5\%	Ref	55.8\%	Ref	45.8\%	Ref	31.4\%	Ref	54.1\%	Ref
Intermediate	27.0\%	Ref	27.7\%	$1.11[0.75,1.64]$	26.3\%	1.70 [1.07, 2.71]	22.6\%	0.84 [0.57, 1.22]	28.2\%	1.17 [0.77, 1.76]	22.5\%	1.03 [0.69, 1.52]	21.9\%	0.87 [0.58, 1.30]
Professional/ managerial	39.7\%	Ref	35.5\%	1.32 [0.90, 1.94]	55.2\%	1.95 [1.26, 3.04]	21.6\%	1.02 [0.70, 1.49]	26.0\%	$1.06[0.70,1.62]$	46.1\%	1.33 [0.93, 1.91]	24.0\%	0.96 [0.65, 1.43]
Parental Occupation														
Routine/manual	24.2\%	Ref	27.3\%	Ref	20.8\%	Ref	37.5\%	Ref	29.5\%	Ref	25.1\%	Ref	35.9\%	Ref
Intermediate	35.0\%	Ref	28.8\%	0.78 [0.53, 1.15]	29.7\%	0.82 [0.53, 1.25]	34.1\%	0.79 [0.54, 1.14]	38.5\%	$1.06[0.71,1.60]$	28.9\%	0.77 [0.52, 1.13]	40.2\%	0.96 [0.66, 1.40]
Professional/ managerial	40.8\%	Ref	43.9\%	$1.14[0.78,1.67]$	49.5\%	1.11 [0.73, 1.67]	28.4\%	0.85 [0.58, 1.23]	32.0\%	1.10 [0.71, 1.71]	46.0\%	1.18 [0.81, 1.71]	23.9\%	0.76 [0.51, 1.14]

Note. Odds Ratios [95\% Confidence interval] are from BCH multinomial logistic regression analysis; Ref $=$ Reference cluster. Bold values are statistically significant at the significance level $(\mathrm{p}=0.05)$. All clusters are compared to the Reference cluster-Low-risk. Each odds ratio is adjusted for the remaining socio-demographic variables in the model.

Results: Sociodemographic characteristics

- The two clusters of heavy drinkers were predominantly male ($\sim 70 \%$)
- The Abstainer but inactive cluster comprised mostly women ($\sim 70 \%$)
- Low-risk yet heavy drinkers were more likely to hold intermediate and professional/managerial jobs.
- Clusters characterized by physical inactivity were less likely to be wealthy or well-educated.

Respiratory disorders

Multimorbidity

Complex multimorbidity

Endocrine, nutritional and metabolic disorders

Results: Health outcomes

- High-risk smokers were most likely to have respiratory disorders.
- Low-risk and Low-risk yet heavy drinkers had a lower prevalence of all health conditions studied.
- The Abstainer but inactive cluster had the highest prevalence of multimorbidity, complex multimorbidity, and endocrine disorders.

Summary of findings

- Identified seven clusters of health risk behaviours
- Patterns of behaviour within the clusters were largely stable over time, with some exceptions.
- Clusters were significantly associated with income, wealth, education, occupation, age and sex.
- Clusters differed in their prevalence of multimorbidity, complex multimorbidity, respiratory disorders, and endocrine, nutritional and metabolic disorders.

Implications

- Health-risk behaviours tend to be fairly stable as people age and so ought to be addressed early.
- Clusters can help identify high-risk subgroups
- Information on clusters can be used to tailor interventions.
- A complex (not linear dose-response) relationship between risk behaviours and disease outcomes.

Future research

- Studies are needed to understand how behavioural clusters interact with sociodemographic risk factors to affect disease outcomes
- How such behaviours might cluster together in other populations, and how this relates to the risk of chronic diseases remains unclear.

Questions/comments?

Suhag, A., Webb, T. L., \& Holmes, J.
@alishasuhag
asuhag1@sheffield.ac.uk (2024). Longitudinal clustering of health behaviours and their association with multimorbidity in older adults in England: A latent class analysis. Plos one, 19(1), e0297422.

References

1. MacRae, C., McMinn, M., Mercer, S. W., Henderson, D., McAllister, D. A., Ho, I., ... \& Guthrie, B. (2023). The impact of varying the number and selection of conditions on estimated multimorbidity prevalence: A cross-sectional study using a large, primary care population dataset. PLoS Medicine, 20(4), e1004208.
2. Soley-Bori, M., Ashworth, M., Bisquera, A., Dodhia, H., Lynch, R., Wang, Y., \& Fox-Rushby, J. (2021). Impact of multimorbidity on healthcare costs and utilisation: a systematic review of the UK literature. British Journal of General Practice, 71(702), e39-e46.
3. Barnett, K., Mercer, S. W., Norbury, M., Watt, G., Wyke, S., \& Guthrie, B. (2012). Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. The Lancet, 380(9836), 37-43.
4. Head, A., Fleming, K., Kypridemos, C., Schofield, P., Pearson-Stuttard, J., \& O'Flaherty, M. (2021). Inequalities in incident and prevalent multimorbidity in England, 2004-19: a population-based, descriptive study. The Lancet Healthy Longevity, 2(8), e489-e497.

3-step method

1. Estimate the Model Without Covariates

- Identify latent classes based solely on primary data indicators, without any exogenous variables

2. Assign Members to Classes

- Classify individuals into classes based on the highest probability of membership. (Note: class assignment is probabilistic and not absolute.)

3. Add Covariates and Outcomes

- Integrate additional variables (covariates) and outcomes to explore their relationship with class membership, while adjusting for possible misclassification.

