Resource report

Physical activity across age and study: a guide to data in six CLOSER stusies

Meg Fluharty ${ }^{1}$, Aase Villadsen ${ }^{1}$, Aaron Kandola², Lucy Griffiths ${ }^{3}$, Dara O’Neill ${ }^{4}$, Sneha Pinto Pereira ${ }^{5}$, Nicholas Timpson ${ }^{6}$, Rachel Cooper ${ }^{7}$, Charlotte Campbell ${ }^{4}$, David Bann ${ }^{1}$
${ }^{1}$ Centre for Longitudinal Studies, UCL Social Research Institute, University College London
${ }^{2}$ Divison of Psychiatry, University College London
${ }^{3}$ Health Data Research UK, Wales and Northern Ireland, Swansea University Medical School
${ }^{4}$ CLOSER, UCL Social Research Institute, University College London
${ }^{5}$ UCL Research Department of Epidemiology \& Public Health, University College London
${ }^{6}$ MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol
${ }^{7}$ Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University

Version 2
March 2023

Versions and Updates

Version 2

This version was updated in March 2023 by the CLOSER team. It includes additional information from the following study sweeps in the report and index table:

- ALSPAC: COVID-19 Questionnaires 1, 2, and 4 (2020-21); accelerometry data
- BCS70: Sweep 10, Age 46, including accelerometery data (2016)
- MCS: Sweep 7, Age 17 (2018); accelerometry data from Sweep 4, Age 7 (2008) and Sweep 6, Age 14 (2015)
- NSHD: actigraphy data (Age 60-64, 2008-2010) \& accelerometry data (Age 69, 2015)
- NSHD, NCDS, BCS70, MCS: COVID-19 waves 1, 2, and 3 (2020-21)
- UKHLS: Wave 11, Wave 12, and COVID-19 Waves 1, 2, 3, 5, 6, 7, 8, 9

Copyright

This document is released under a Creative Commons Attribution Non-commercial 4.0 International (CC BY-NC 4.0) Licence. The extract below is a summary. The full terms are available from https://creativecommons.org/licenses/by-nc/4.0/legalcode.

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Non-Commercial - You may not use the material for commercial purposes.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

How to Cite

Fluharty, M., Villadsen, A., Kandola, A., Griffiths, L., O’Neill, D., Pinto Pereira, S., Timpson, N., Cooper, R., Campbell, C., Bann, D. (2023). Physical activity across age and study: a guide to data in six CLOSER studies (Version 2). London, UK: CLOSER.

Table of Contents

Copyright ii
How to Cite iii
Preface 3
Acknowledgements 3
Versions and Updates ii

1. Introduction 4
1.1 Objective and outline of guide 4
1.2 Brief overview of Cohort and Longitudinal Studies Enhancement Resources (CLOSER) 5
2. Physical activity 6
2.1 General definitions and overview 6
2.2 Importance in epidemiology and other disciplines 7
2.3 Physical activity domains 8
2.3.1 Leisure time physical activity 8
2.3.2 Occupational activity 9
2.3.3 Active travel 10
2.3.4 Domestic activity 11
2.3.5 Sedentary behaviours 11
3. Data collection methods 12
3.1 Self-report 12
3.2 Accelerometers 13
4. Physical activity in CLOSER studies 14
4.1. Developing an inventory of physical activity measures in CLOSER studies: inclusion and 15exclusion criteria
5. Physical activity in NSHD 16
5.1 Longitudinal study description 16
5.2 Physical activity overview (23 to 74y) 17
5.3 Data access 18
6. Physical activity in NCDS 19
6.1 Longitudinal study description 19
6.2 Physical activity overview (11 to 55y) 19
6.3 Data access 20
7. Physical activity in BCS70 21
7.1 Longitudinal study description 21
7.2 Physical activity overview (5 to 42y) 22
7.3 Data access. 23
8. Physical activity in ALSPAC 23
8.1 Longitudinal study description 23
8.2 Physical activity overview (3 to 22y) 24
8.3 Data access 24
9. Physical activity in MCS 25
9.1 Longitudinal study description 25
9.2 Physical activity overview (3 to $14 y$) 26
9.3 Data access. 27
10. Physical activity in UKHLS 27
10.1 Longitudinal study description 27
10.2 Physical activity overview (Children: under 10y) 28
10.3 Physical activity overview (Young people: 10 to $15 y$) 28
10.4 Physical activity overview (Adults: 16y+) 29
10.5 Data access. 30
11. Discussion and tables of comparable variables 30
11.1 Leisure time physical activity 34
11.2 Occupational activity 52
11.3 Active travel 57
11.4 Domestic activities 64
11.5 Sedentary behaviour 69
12. Conclusion 77
References 78

Preface

CLOSER (Cohort \& Longitudinal Studies Enhancement Resources) aims to maximise the use, value and impact of longitudinal studies, both at home and abroad. Bringing together eight leading studies, the British Library and the UK Data Service, CLOSER works to stimulate interdisciplinary research, develop shared resources, provide training, and share expertise. In this way CLOSER is helping to build the body of knowledge on how life in the UK is changing - both across generations and in comparison to the rest of the world.

CLOSER's research includes a number of work packages focused on retrospective harmonisation, their aim being to make the data from different longitudinal studies more comparable in order to find out how life in the UK is changing from generation to generation. This documentation is a meta-data guide produced as part of a CLOSER harmonisation work package.

Acknowledgements

We would like to thank the study teams and participants for their continued support. We would also like to thank Dr Andy Wong, Dr Brian Dodgeon, and Ms Kelly Ward for research assistance in this project.

Thanks to Professor Emla Fitzsimons and Professor Kate Northstone for their help with the updates to Version 2.

1. Introduction

1.1 Objective and outline of guide

Physical activity has an important role to play in addressing two of the most important public health challenges of modern times: the rising prevalence of obesity [1-3] and population ageing [4, 5]. Over 60 years, compelling research evidence has been accrued, demonstrating physical activity's myriad health benefits [6, 7]. More recently, evidence has also highlighted the adverse health consequences of sedentary behaviour [8].

Longitudinal studies are a valuable resource and many have measured physical activity. This project utilises data from six CLOSER partner studies to identify all measures of physical activity and sedentary behaviour available within each study, document these, and indicate possibilities for harmonisation. The studies are:

- MRC National Survey of Health and Development (NSHD)
- National Child Development Study (NCDS)
- 1970 British Cohort Study (BCS70)
- Avon Longitudinal Study of Parents and Children (ALSPAC)
- Millennium Cohort Study (MCS), and
- Understanding Society: The UK Household Longitudinal Study (UKHLS).

This guide will be structured in the following way. First the concept of physical activity is defined and its application in research outlined, including a literature review of the key domains of physical activity in relation to various health outcomes. Examples of the use of CLOSER longitudinal data in examining physical activity are provided. Next, each of the CLOSER studies included in this project are outlined in terms of their measurement of physical activity in the following domains: leisure time, occupational activity, active travel, domestic activities, and sedentary behaviours. Details regarding all measures of
physical activity identified in this guide are presented in the searchable electronic appendix. The final section of the guide then describes and discusses the potential for cross-study comparability in each physical activity domain. Overall, this guide is intended to be a helpful resource which future researchers can both utilise and build upon.

This guide focuses on self-reported measures of physical activity, as these are most commonly ascertained. However, we have documented the objective measures that are available in each study and the relevant sweeps.

1.2 Brief overview of Cohort and Longitudinal Studies Enhancement Resources (CLOSER)

Cohort and Longitudinal Studies Enhancement Resources (CLOSER) is a consortium of UKbased longitudinal studies, currently funded by the Economic and Social Research Council (ESRC). CLOSER aims to maximise the use, value and impact of longitudinal studies in the UK. CLOSER was formed in 2012, bringing together world-leading longitudinal studies, the British Library and the UK Data Service, to stimulate interdisciplinary longitudinal research, develop shared resources, provide training and share expertise.

In September 2020, CLOSER expanded its partnership from 8 to 19 UK-based longitudinal studies as part of a first round of expansion. The work carried out to produce this guide was completed prior to the expansion.

CLOSER is working to bring longitudinal data together in a consistent format, using data harmonisation. This process allows researchers to co-analyse and compare data from different studies, revealing how cohorts differ and how the population changes over time. Additionally, CLOSER are leading research to link data held by government to survey data collected by longitudinal studies. Linking this data enables researchers to gain rich
insights into how different aspects of people's lives interrelate. CLOSER Discovery enables researchers to search and browse questionnaires and data from the UK's leading longitudinal studies to find out what data are available. CLOSER provides training and capacity building opportunities for new and experienced researchers and those running longitudinal studies. The CLOSER Learning Hub has information and resources aimed at those in academia, government and the third sector who are new to longitudinal studies, to help them better understand the value of the studies and how to use the data. Furthermore, CLOSER fund research projects that use longitudinal data to investigate a wide range of areas of interest, including obesity, physical activity, mental health, and ageing. Finally, CLOSER is working to achieve the greatest possible impact for outputs and activities by influencing government, producing longitudinal resources for the academic community and funding research that addresses the biomedical, social, economic and environmental challenges facing the UK.

2. Physical activity

2.1 General definitions and overview

Physical activity refers to any "bodily movement produced by skeletal muscles that results in energy expenditure" (p126) [9]. While physical activity can be broadly conceptualised in terms of energy expenditure, the goal of research is often to understand and measure various qualitative and quantitative aspects of physical activity [10]. For example, a study may wish to compare the health benefits of physical activity derived from work versus during leisure time. Such contextual information can be useful for identifying the most suitable domains to focus on to promote physical activity. Another study might be interested in determining the optimal type, frequency, intensity, and duration of physical activity to develop an intervention. Understanding these aspects of
physical activity are of particular importance for estimating physical activity energy expenditure and understanding physical activity within the context of cardiometabolic health [11].

The study of physical activity has given rise to several subfields of research, the most recent of which is sedentary behaviour. Sedentary behaviour refers to any behaviour where the body expends less than 1.5 metabolic equivalents (METs) of energy, such as sitting or lying down [12]. Another example includes the study of exercise science. Exercise is a subset of physical activity that involves structured forms of activity that are routinely repeated to improve or maintain physical fitness [9]. The range of methods for conceptualising physical activity make it a diverse and complex field of study.

2.2 Importance in epidemiology and other disciplines

In epidemiological research, the relationship between physical activity and disease has been well-established for many years. In 1953, Morris et al. demonstrated that those people in physically inactive professions such as bus drivers and telephonists, had a higher incidence of coronary heart disease than their peers with physically active jobs, such as bus conductors and postmen [13]. Since these landmark findings, a series of prospective longitudinal studies have found a consistent relationship between physical activity and the incidence of cardiovascular disease and various cardiovascular risk factors, such as blood pressure and obesity [14-17]. Findings from prospective longitudinal studies have also demonstrated that physical activity levels are related to the incidence of several other major non-communicable diseases, such as diabetes and multiple forms of cancer [17-19], regular exercise is associated with muscular skeletal benefits and promotes healthy ageing of muscle [20, 21]. Furthermore, the importance of physical activity appears to extend beyond physical health, with prospective evidence
suggesting an association with the risk of various neurological and psychiatric conditions, including dementia, depression and anxiety disorders [22-24].

Physical activity is measurable at a population-level and its relationship with such a broad range of outcomes makes the quantification of physical activity an important goal. Importantly, physical activity is a modifiable behaviour. Through a range of informational, social and behavioural approaches, it is possible to increase physical activity levels in people of different ages, social groups, countries and communities [25]. The consequences of promoting physical activity at a population level are significant. One report estimates that decreasing physical inactivity by 25% worldwide would prevent 1.3 million deaths each year [19]. We may also investigate causal associations of physical activity on health outcomes using emerging analysis approaches, such as bi-directional causal modelling (e.g. Mendelian randomisation) [26]. The collection of population-level physical activity data will continue to play an important role in understanding and reducing the global burden of disease so we can chart changes by age (within individuals), period, and longitudinal study.

2.3 Physical activity domains

2.3.1 Leisure time physical activity

Leisure time physical activity includes any form of activity undertaken during leisure (nonwork) time, such as exercise. Leisure time physical activity only accounts for an estimated $5-10 \%$ of total energy expenditure [27, 28], but it has been the predominant focus of epidemiological research [29, 30]. There is a particular public health interest in leisure time physical activity due to the assumption that individuals have greater autonomy over their activity levels during leisure time and such activities may improve cardiorespiratory fitness [31].

Prospective studies have found that greater levels of participation in leisure time physical activity is associated with a longer lifespan [32-34] and a lower prevalence of chronic diseases including cardiovascular disease, type-2 diabetes and multiple cancers [14, 3538]. Further, evidence suggests that even relatively low levels of participation in leisure time physical activity may have substantial health benefits. For example, one study estimates that engaging in the equivalent of 75 minutes of brisk walking per week could increase life expectancy by 1.8 years in those aged over 40 years old, compared with no activity [33]. Engaging in more regular moderate-to-high intensity activity can improve cardiorespiratory fitness, which may have additional, independent benefits for cardiovascular health [39-41]. Cultural and socioeconomic factors may also affect leisure time physical activity. For example, leisure time physical activity has been reported to increase with age after retirement in China, but not in other countries such as Australia [42]. People with higher levels of socioeconomic position tend to report higher levels of leisure time physical activity than those with lower socioeconomic position [43].

2.3.2 Occupational activity

Occupational activity refers to any activity related to employment and may-depending on the job role-contribute substantial fractions of daily activity [27]. Early epidemiological studies examining links with health outcomes focussed on occupational activity [13], but attention shifted away following societal changes, such as increasing automation in the workplace. Recently, there has been a renewed interest in occupational activity on the back of growing concerns about sedentary behaviour, particularly in the workplace [44].

Most physical activity guidelines focus on promoting physical activity regardless of the domain, but the relationship between occupational activity and health is contentious. Certain aspects of occupational activity may not be conducive to health benefits as it can be of an insufficient intensity, over long durations without sufficient recovery periods, and
involve heavy lifting or improper posture [45]. Some longitudinal studies have found that moderate-to-high levels of occupational activity have a weak association with increased cardiovascular risk [36] or increased risk of long-term sickness from work [46]. Such results could however be attributable to confounding by common causes of both highly active occupations and ill health [47, 48]. However, most studies find a dose-response relationship between all physical activity and positive health outcomes irrespective of activity domain [18, 34, 49]. Prospective studies have mostly found that high versus low occupational activity is associated with a lower risk of chronic disease, including type 2 diabetes, cardiovascular disease, cancers and all-cause mortality [14, 34, 35, 50]. While the impact of high occupational activity levels on health are unclear, there are growing concerns about the health impact of sedentary behaviour [51]. There has been a welldocumented rise in sedentary behaviour in the workplace of developed nations [51]. In the UK for example, those in office-based jobs spend between 65-75\% of their working hours sitting down [52,53]. Research underlying the health concerns with sedentary behaviour are discussed below.

2.3.3Active travel

Active travel generally refers to physical activity-based travel that is not for the purpose of leisure, such as cycling or walking to work. Engagement in active travel appears to have declined in recent years [54]. Data from Understanding Society suggest that 15\% of participants who were currently employed and travelled for work engage in active travel to work from 2009 to 2011 [55].

Active travel is increasingly promoted as a potential method of increasing total physical activity [27], with several reported links to health outcomes [56]. Prospective studies suggest that active travel could reduce the risk of type 2 diabetes, cardiovascular disease, hypertension, and all-cause mortality [57, 58]. While there may be some additional risks associated with active travel, such as air pollution exposure [59], these are likely to be
outweighed by the health benefits [56]. However, this is a relatively new area of research and as such there remains uncertainty in the links between active travel and health outcomes.

2.3.4 Domestic activity

Domestic activities, such as cleaning and gardening, also contribute towards total physical activity levels, and women and older adults spend a greater proportion of time in domestic activities [60]. Promoting engagement in physically demanding domestic activities are another potential method of increasing total physical activity levels in the population. One cross-sectional study in the UK estimates that domestic activity accounts for 35.6% of all daily moderate-to-vigorous physical activity [60]. However, similar to occupational activity, it is unclear whether domestic activity is associated with increased health. There is some evidence for links between higher domestic activity and reduced premature cardiovascular disease and all-cause premature mortality risk [61, 62], yet some studies report null findings [63]. A meta-analysis of prospective studies found that physical activity of daily living was associated with a lower risk of all-cause mortality [34]. However, this definition of daily living does include domestic activities as well as others such as active travel.

2.3.5 Sedentary behaviours

Early work by Morris et al. (1953) and the series of studies that followed it were important for highlighting the prominent role of physical activity in preventing poor health. Much of this attention has been attributed to the promotion of moderate-to-vigorous physical activity, but the rise of interest in sedentary behaviour is a relatively new area in public health. There is evidence from prospective studies to suggest that sedentary behaviour is associated with a range of adverse health outcomes, including an increased risk of cardiovascular disease, type-2 diabetes and all-cause mortality [17, 44, 64, 65]. Concerns about sedentary behaviour stem from its pervasiveness in modern lifestyles. Sedentary
behaviours that include prolonged periods in a sitting, reclining or lying posture now make up a large proportion of daily life for many people, such as watching television or using a computer [66]. Such behaviours are major contributors to the rise in sedentary behaviour [67, 68] and are spread across several activity domains, including leisure time and occupational activity [44, 69]. Worryingly, some evidence suggests that the adverse health impact of sedentary behaviour may be independent of total physical activity levels or time spent in moderate-to-vigorous activity [64, 65, 70]. There is also a strong social gradient in sedentary behaviour, with a higher prevalence amongst socioeconomically disadvantaged groups [71].

In a global action plan to tackle non-communicable diseases, member states of the World Health Organisation (WHO) agreed to seek to reduce sedentary behaviour by 10\% between 2013 and 2025 [72]. Despite this agreement, a 2018 report including 1.9 million participants from 168 countries suggest that sedentary behaviour has been stable between 2001 and 2016 at around 28.5\% [73].

3. Data collection methods

Physical activity can be measured by self-report and/or objectively. In practice, both are likely to provide complementary value to large-scale studies. The common methods for data collections are outlined below.

3.1 Self-report

Self-report physical activity questionnaires have been a staple of population-based research for many decades due to their practicality and low-cost [74]. A variety of selfreport questionnaires exist with some focussing on assessing recent physical activity
trends and others that attempt to classify lifetime activity levels [11]. The International Physical Activity Questionnaire (IPAQ) is the most widely used self-report method [75]. It contains 31 questions (9 in the short-form version) on how much time people spend sitting, in light activity (e.g. walking), moderate activity (e.g. leisure cycling), and vigorous activity (e.g. running). The reference period is either the past seven days, or in a typical week. Scores on the IPAQ can then be used to estimate total energy expenditure, via converted activities to metabolic equivalents (METs).

Self-report questionnaires have some advantages that extend beyond their practicability, such as their capacity to record the context and perceived intensity of physical activity [74]. For example, by using self-report questionnaires it is possible to categorise physical activity into different domains, which can be used to better understand and promote physical activity behaviour. There are also concerns relating to the reliability of self-report questionnaires; several studies have found large differences between self-reported and objectively measured physical activity [40, 76]. While such differences are commonly attributable to reporting biases in self-reported data, they may also be due to methodological differences between the two measures. Indeed, some self-reported measures correlate highly with directly observed measures [77].

3.2 Accelerometers

Accelerometers are small electromechanical devices that allow for the objective measurement of physical activity [78]. Accelerometers are usually worn on the hip, wrist or chest and detect incidences of acceleration that are interpreted as bodily movements. Incidences of acceleration are recorded as 'counts'. The number of counts that are recorded over a pre-specified time epoch, usually one minute, can be used to determine the intensity of activity. Accelerometers are validated with a moderate-to-strong
correlation with direct measures of oxygen consumption, such as doubly labelled water and calorimetry [79]. Modern triaxial accelerometers, such as the ActiGraph GT3X+, can record activity across three directional planes and are strongly correlated with direct measures of oxygen consumption, such as gas analysis [80]. Additionally, GPS accelerometery tracking records movement and position in the world, called 'inertia measurements'. Using these measurements, the tracker can calculate the position and moving pattern [81]. However, the use of these is limited due to governance and ethical reasons.

Accelerometers can be expensive for large-scale studies, but the cost per unit is falling, particularly with the rise in commercial grade accelerometers that also perform well against direct measures of oxygen consumption [82]. However, methods of processing and analysing accelerometer data are highly variable and the devices remain poor at estimating non-ambulatory activities, such as cycling or weight lifting [74].

4. Physical activity in CLOSER studies

The range of physical activity measures available in the CLOSER longitudinal studies have allowed studies to pursue a diversity of research questions. Several studies have sought to quantify physical activity levels in the studies to estimate broader trends in the UK population. For example, findings have been used to suggest that just half of UK children are achieving national physical activity guidelines [83] and physical activity in older adults is generally low [84, 85]. Other studies have used the data to characterise changes in activity patterns over time [86] or clustering of physical activity with other health behaviours [87]. Some studies have identified early life factors that are associated with physical activity engagement in later life, such as coordination and motor control or institutional care [88, 89]. Other studies have used this data to investigate the associations
of physical activity with health-related outcomes such as body composition [90], cognitive decline [91] depression, [92] and frailty [93].

4.1. Developing an inventory of physical activity measures in CLOSER studies: inclusion and exclusion criteria

In order to provide an overview of the measures of physical activity available in the longitudinal studies it was necessary to systematically search all available data collections via original questionnaires. Measures were recorded on a spreadsheet, noting the study, sweep, year, age of study member, subject, informant, administrator, data collection method, questionnaire, question, response scale, physical activity domain, and whether it captured frequency, duration, and/or intensity. Since we identified physical activity variables by manually checking available questionnaires from each study, variables subsequently derived were not included.

This guide includes multiple measures of physical activity. These are categorised where possible into leisure time, occupational, active travel, and domestic domains.

Physical activity measures were included if they reported frequency, duration, and/or intensity of activity. We also include measures of sedentary behaviour (e.g. time spent watching TV). Data included in this guide is from completed data collection sweeps up to November 2022, where the data has been released (i.e. measures used in subsequent sweeps were not included).

Additionally, to retain a manageable scope any non-core sweeps (e.g. innovation panels and feasibility studies) were excluded; however, COVID-19 waves were included. Furthermore, measures were excluded if they were about anyone other than the main study member (e.g. mothers in ALSPAC), contained physical activity preferences, or
questions regarding fatigue following physical activity. Additionally, we excluded ambiguous activities that may also be categorised as sedentary behaviour such as listening to the radio (as participants could potentially also be physically active). Activities such as reading for pleasure and drawing were not counted as sedentary.

This guide identifies and describes measures of physical activity that are similar both within and across studies. This can help facilitate future cross-study comparative research. All measures of physical activity identified are available in the searchable electronic appendix that accompanies this guide. This appendix (a complete inventory of the measures available as of the time of writing) can be filtered and sorted on different characteristics of the measures or their administration, including study, year, sweep, respondent, activity domain, and subdomain, and whether frequency, duration and intensity of the activity was ascertained. Original variable names are included so data users may easily find these variables within datasets. Measures are coded ('Yes'/'No') in terms of whether intensity, duration, and frequency were ascertained. The full inventory of measures is available in this appendix.

In the following sections, each of the studies are introduced and a summary of the physical activity measures for each respective study is provided. A later section focuses on opportunities for comparison across studies.

5. Physical activity in NSHD

5.1 Longitudinal study description

The Medical Research Council (MRC) National Survey of Health and Development (NSHD) is the first national birth study in Britain. Initially it was a maternity survey of 13,687 of all recorded births of singletons in one week of March 1946 in England, Scotland, and Wales.

The follow-up study is based on a socially stratified sample of 5,362 babies born to married parents. A total of 24 sweeps of data have been collected on participants who are now in their 70s. During childhood, data collection involved interviews with mothers and teachers, child tests, and school medical examinations, and from early teenage years study members themselves started to provide information. In adult sweeps, data were increasingly collected by research nurses who administered questionnaires and carried out physical assessments including biomedical measures. Other adult sweeps involved postal questionnaires. The latest sweep of data was collected at 68-59y with a total of 2,638 of the original study members taking part [94-96].

5.2 Physical activity overview (23 to 74y)

No data on physical activity were ascertained in childhood or adolescence in the NSHD. Self-reported measures across each physical activity domain were ascertained across adulthood from 23 to $74 y$. Leisure time physical activity was measured at ages $31,36,43$, 53, 60-64, 68-69y (and 74y in the COVID-19 waves). Occupational activity was measured at ages 36,43 , and $60-64 y$. Active travel was measured at ages 36 and $60-64 y$. Domestic activities were measured at ages $36,43,53,60-64 y$, (and $74 y$ in the COVID-19 waves. Finally, sedentary behaviour was measured at $60-64 y$ and at $74 y$ in the COVID-19 waves. In terms of comparability within this longitudinal study, leisure time physical activity (LTPA) was measured the most frequently; age $36 y$ was based on the Minnesota LTPA questionnaire [97], while the age 60-64y was based on a modified version of the EPAQ-2 (EPIC Physical Activity Questionnaire) [98]. Each measure reports the past 4 weeks of physical activity engagement, and previous work in NSHD has compared across each age by categorising those reporting no activity as inactive; those participating one to four times as moderately active; and those participating five or more as most active [99].

Occurrence of occupational physical activity was reported, and frequency may be compared although scales vary slightly. Measures of preferred travel methods and frequency (days/week) are comparable across ages 36 and 43y, although response scales for distance and duration are not comparable. Overall engagement in domestic activity is comparable across ages, although duration-related questions involve different timelines and are therefore difficult to compare (i.e. hour/month in the last month vs hours in the last year) while others do not specify the timespan of recall. Frequency of domestic activity is comparable across ages on the monthly scale with ages $30-40$ specifying past 4 weeks and age 60y specifying past 12 months. Finally, measures of sedentary behaviour duration were recorded from ages 60-64y and therefore have no earlier ages to compare to.

Additionally, objective measures of daily activity were captured at ages 60-64y using the ActiHeart (chest-worn device that measures movement and heart rate) and, at ages 6869y using the GCDC X15-1c triaxial accelerometer (Gulf Coast Data Concepts, Waveland, Mississippi), the latter as part of the VIBE study [100].

During the COVID-19 pandemic, the NSHD was included in data collection across the British birth cohorts along with NCDS, BCS70, and MCS. A web-based interview was carried out in May 2020 (Wave 1), September-October 2020 (Wave 2), and February-March 2021 (Wave 3), when NSHD members were aged 74. The first and second COVID-19 waves included questions on leisure and domestic activities and the third measured sedentary behaviour (particularly screen-time).

5.3 Data access

NSHD data are freely accessible to bona fide researchers by applying through the NSHD data sharing website. More information on NSHD is available on the NSHD website.

6. Physical activity in NCDS

6.1 Longitudinal study description

The National Child Development Study (NCDS) was originally known as the Perinatal Mortality Study and was initially developed in response to concerns about levels of stillbirths and neonatal births. It surveyed 17,415 babies born in a single week in March 1958 in England, Scotland and Wales. The study has since continued to collect data throughout the life course, at ages $7,11,16,23,33,42,44,46,50$ and $55 y$. Data collection at 62 y is ongoing at the time of writing, but COVID-19 waves are available. Although the study was initially focused on child health, it has evolved to incorporate many other important domains and outcomes. In childhood, parents (typically mothers) were the main reporters, but also teachers and schools have provided data, and children completed tests and underwent medical examinations. From the age of $16 y$ and throughout adulthood, study members have provided data through interviews, selfcompleted questionnaires, tests of skills and ability, and biomedical and physical assessments have also been carried out. The most recent core sweep was in 2013 when study members were aged 55y, with a total of 9,137 participating [101].

6.2 Physical activity overview (11 to 55y)

NCDS contains childhood and adult self-reported measures across each physical activity domain (from 11-55y). Leisure time physical activity was measured at ages $11,16,23,33$, $42,44,50$, and $55 y$ (and $62 y$ in the COVID waves), with leisure time variables at age 44 based on a modified version of the EPAQ-2 (EPIC physical activity questionnaire) [98]. Occupational physical activity was measured at ages 33, 44, 50 and 55y. Active travel was
measured at ages 44 and 46 y . Domestic activities were measured at ages 33,44 , and 50 y (and 62y in the COVID waves). Finally, sedentary behaviour was measured at ages 11, 16, 23 , and $44 y$ (and $62 y$ in the COVID waves).

In terms of comparability across time within this longitudinal study, leisure time physical activity can be compared in terms of intensity and frequency of engagement on the weekly/non weekly level. Occupational activity can be compared by intensity in earlier ages, although only engagement in specific activities (i.e. standing) can be compared across ages $33,44,50$, and $55 y$. Active travel measures only appear in ages 44-46y and can therefore not be compared longitudinally. Frequency of domestic activities may be compared on the weekly level, although there are some slight differences in wording; this domain may also be comparable based on type of activity. Sedentary behaviour in childhood, while again slightly different, may be comparable on frequency. Finally, sedentary behaviour in adulthood is not directly comparable as measures vary from frequency to duration.

The NCDS was included in the COVID-19 waves of data collection in the British birth cohorts. A web-based interview was carried out in May 2020 (Wave 1), September-October 2020 (Wave 2), and February-March 2021 (Wave 3), when NCDS members were aged 62. The first and second COVID-19 waves included questions on leisure and domestic activities and the third measured sedentary behaviour (particularly screen-time).

6.3 Data access

NCDS data are freely accessible to bona fide researchers by applying through the UK Data Service. More information on NCDS is available on the CLS website.

7. Physical activity in BCS70

7.1 Longitudinal study description

The 1970 British Cohort Study (BCS70) began as The British Births Survey and was later renamed Child Health and Education Study before settling on its current name. The initial birth survey involved 17,198 babies born in a single week in April in 1970. Like the older NCDS study, it was initiated with a strong focus on child health, before later including many other areas such as social, psychological, educational and economic outcomes. A total of ten main sweeps of data collection have been carried out, with follow-ups after the birth survey at ages $5,10,16,26,30,34,38,42$ and $46 y$. In childhood, parents were main reporters on their children, with teachers also providing information, in addition to child tests and school medical examinations.

Study members themselves first completed questionnaires at age 16 y , and in adulthood they participated through in-person or telephone interviews, or postal surveys. The most recent core BCS70 sweep, which included a full range of biomeasures, was completed in 2018 at age 46-48y and achieved a total of 8,581 participating study members. At the time of writing, data collection at 51y is ongoing [102].

The BCS70 was included in the COVID-19 waves of data collection in the British birth cohorts. A web-based interview was carried out in May 2020 (Wave 1), September-October 2020 (Wave 2), and February-March 2021 (Wave 3), when BCS70 members were aged 50. The first and second COVID-19 waves included questions on leisure and domestic activities and the third measured sedentary behaviour (particularly screen-time).

7.2 Physical activity overview (5 to 42y)

BCS70 contains childhood and adult self-reported measures across physical activity domains (from 5-50y). Leisure time was measured at ages $5,10,16,30,34$, and 42 y ; active travel was measured at age $34 y$; domestic activities were measured at age 16 and 46y in the core waves and 50y in the COVID waves; and sedentary behaviour was measured at ages $5,10,16,42$, and $46 y$ and at $50 y$ in the COVID waves.

In terms of comparability across sweeps in this longitudinal study, overall engagement in leisure time can be compared across ages $5,10,16,30,34,42$, and $46 y$ while intensity can be compared across ages where information was collected on specific activities/sports (i.e. ages 30, 43, 46y). Additional questions with frequency and duration responses varied somewhat between questions. Active travel was only measured at one age and therefore cannot be compared across sweeps. The frequency of domestic activity has been measured at three ages but there is different information on duration and intensity so these activities may not be comparable on these metrics. Finally, sedentary behaviour provided comparable measures of duration (hr/day) in childhood and adulthood (ages 5, $10,16,42,46$, and $50 y$).

Additionally, objective measures of activity expenditure ($\mathrm{kJ} / \mathrm{kg} /$ day) were captured at ages 46-48y using the ActivPal accelerometer (PAL technologies Ltd, Glasgow, Scotland). Derived data from the accelerometry measurements have been released, which describe the time spent sitting, standing, or carrying out activity. Except from sitting being a sedentary behaviour, standing and activity bouts cannot be categorised into leisure or occupation etc. like other physical activity measures because the accelerometer only measures the movement and not purpose of the activity. Values are available for each day the cohort member wore the device, as well as a daily average calculated from all the days of wear.

7.3 Data access

BCS70 data are freely accessible to bona fide researchers by applying through the UK Data Service. More information on BCS70 is available on the CLS website.

8. Physical activity in ALSPAC

8.1 Longitudinal study description

The Avon Longitudinal Study of Parents and Children (ALSPAC) is also known as Children of the 90 s. The study recruited 14,541 women with expected deliveries from April 1991 to December 1992 in the Avon area of South West England [103, 104]. The aim of the study was to understand the influence of environmental and genetic factors on the health and development of parents and children. Women completed questionnaires during their pregnancy and have continued to provide data on themselves and their children multiple questionnaires in addition to clinic assessments. Partners, teachers, and school age children themselves have provided questionnaire data. Data have been collected on a yearly basis from one or several of these respondents and have included health and biometric data, as well as social and psychological measures. Original parents (G0) and their children (G1) have been followed up using questionnaires and face-to-face clinics, with biological samples, exposure, and outcome measures.

During the COVID-19 pandemic, six computer-assisted web surveys were administered (April/May 2020, May/June 2020, Oct 2020, Dec 2020-March 2021, July - Dec 2021, April/May 2022) to both G0 and G1 cohorts. Antibody tests were taken in Oct 2020 and Serological measures were assessed in April-June 2021 and May-June 2022.

8.2 Physical activity overview (3 to 22y)

ALSPAC contains childhood and adult self-reported measures across physical activity domains (from 5-22y). Leisure time was measured at ages $4,5,6,8,9,11,13,16,18,22 y$ and $26 y$ as well as in some COVID waves. Active travel was measured at ages $3,4,5,6,8$, 13,16 , and $22 y$; and sedentary behaviour was measured at ages $3,4,5,6,8,9,11,13,16,22$ and $26 y$, and in some COVID waves.

In terms of comparability, measures of leisure time reporting frequency or type of activity (intensity) are comparable across ages. Overall, the method of active travel can be compared across ages, and duration (min/day) is commonly measured in childhood. Additionally, there are some measures of distance (km) in very early childhood although there are no common measures in adulthood. Finally, measures of sedentary behaviour are comparable in duration (hr/day) across all ages, and in some cases additionally asking for differences in weekdays and weekends.

Objective measures of physical activity (minutes of sedentary, light, and moderate to vigorous intensity physical activity) were assessed at ages 12,14 , and $15 y$ (and a sub-set at age 24) using the Actigraph accelerometer (Actigraph, Pensacola, Florida).

8.3 Data access

ALSPAC data is accessible to bona fide researchers by applying through the ALSPAC online proposal system. Fees may apply. More information is available on the ALSPAC website. ALSPAC is a member of the International Children's Accelerometer Database (ICAD), and harmonised data is also available through this consortium.

9. Physical activity in MCS

9.1 Longitudinal study description

The Millennium Cohort Study (MCS) is the youngest of the current UK national Iongitudinal studies and involves just over 19,000 families with babies born around the millennium (Sep 2000- Jan 2002) in England, Wales, Scotland, and Northern Ireland [105]. The study was set up to be multidisciplinary, focusing on a range of experiences and outcomes of children and their families, including physical and mental health, whilst collecting rich social, economic, and demographic data on participants to understand how these shape outcomes. The first sweep was carried out when study children were around 9 months old and they have since been followed up at age $3,5,7,11,14 y$ and recently at age 17 y . In childhood, main carers (mainly mothers) have provided information through interviews, and if present their partners have also taken part. Teachers have provided data in some sweeps. Physical measurements and assessments of children's skills and abilities have been carried out, and from age $11 y$ study children have completed their own questionnaires. Fieldwork for the age 17y sweep was completed in 2019 with data released in the autumn of 2020 .

The MCS was included in the COVID-19 waves of data collection in the British birth cohorts. A web-based interview was carried out in May 2020 (Wave 1), September-October 2020 (Wave 2), and February-March 2021 (Wave 3), when MCS members were aged ~20 years. The first and second COVID-19 waves included questions on leisure and domestic activities and the third measured sedentary behaviour (particularly screen-time).

9.2 Physical activity overview (3 to $14 y$)

MCS contains childhood self-reported measures across physical activity domains (from 314y). Leisure time was measured at ages $3,5,7,11,14$, and 17y (and 19-20y in the COVID19 waves); active travel was measured at ages $5,7,11,14$, and $17 y$; and sedentary behaviour measured at age $3,5,7,11,14$, and $17 y$ (and 19-20y in the COVID-19 waves). Domestic activity was only measured in the COVID-19 waves at 19-20y.

With regard to comparability across time, overall engagement in leisure time activities is comparable in duration (weekly), while those indicating specific activity/sport are comparable in intensity. The COVID-19 waves are slightly different to the core waves as they measure leisure activity as daily duration and do not include the same level of information about the specific activities so are not directly comparable with the earlier waves. However, they are directly comparable to the other cohorts included in the COVID19 waves. The form of active travel used is comparable across ages. Finally, measures of sedentary behaviour duration (hrs/day) while using TV, video games, and smartphones are comparable across ages.

At age 14 y , participants also completed time-use diaries that included physical activity data from one weekday and one weekend day collected through paper forms, a mobile application, or online form. Data was recorded in 10-minute slots throughout the day from 4 am .

Additionally, objective measures of physical activity (minutes of sedentary, light, and moderate to vigorous intensity physical activity) were captured at age 7y using the Actigraph GT1M accelerometer, waist-worn (Actigraph, Pensacola, Florida); and at age 14y using the GENEActiv accelerometer, wrist-worn (Activinsights, Kimbolton, England). Raw accelerometry data and derived variables are available for the age 7y data, and derived
variables are available at age 14 y . The raw accelerometer data from age 14 y is available on request from the CLS Data Access Committee.

9.3 Data access

MCS data are freely accessible to bona fide researchers by applying through the UK Data Service. More information on MCS is available on the CLS website.

10. Physical activity in UKHLS

10.1 Longitudinal study description

Understanding Society: The UK Household Longitudinal Study (UKHLS) commenced in 2009 with an initial sample of 39,802 households in England, Scotland, Wales, and Northern Ireland. Unlike the other studies covered by this guide, which are birth cohort studies by design, UKHLS is a panel study. UKHLS expands on and incorporates the British Household Panel Survey which began in 1991 with 5,500 households. The primary objective of UKHLS is to obtain longitudinal data on domains such as health, work, education, income, family, and social life, to help inform policies and interventions. Data is collected annually and all individuals in the household are followed, also after they leave the household, and similarly any new household members get to join the study. A total of 10 annual sweeps have been completed with sweep 11 under way. One person completes the household questionnaire. Each person aged 16 or older completes the individual adult interview, including a self-completion questionnaire. Young people aged 10 to $15 y$ are asked to respond to a paper self-completion questionnaire. Information on children under 10 is obtained from parents. A range of measures are collected from participants, including behaviours and attitudes, life events, employment, and health and
wellbeing. Biomedical and objective health measures have been obtained in some sweeps. The most recent survey (wave 8) completed in 2016-2018 involved a total number of 26,083 households and 35,417 individuals.

From April 2020 to September 2021, UKHLS captured information about the impact of the COVID-19 pandemic on individuals, families, and wider communities. COVID waves 1-9 were completed in April (COVID1), May (COVID2), June (COVID3), July (COVID4), September (COVID5), and November (COVID6) of 2020, and January (COVID7), March (COVID8), and September (COVID9) of 2021. Respondents mainly carried out an online survey, but some telephone interviews were carried out in 2020. A self-completion questionnaire was sent to young people aged $10-15$ as part of the COVID4, COVID6, and COVID8 waves in July 2020, November 2020, and March 2021, respectively.

10.2 Physical activity overview (Children: under 10y)

Parents were asked about their child's sedentary behaviour (hrs/day) in waves 3-12. This included time spent watching television, using the computer, gaming, or using a screen.

10.3 Physical activity overview (Young people: 10 to 15y)

Using the young person questionnaire (ages 10-15), leisure time activity was measured at waves $1,2,4,6,8,9,10,11$, and COVID6. Waves $1,2,4,6,8,9,11$, and COVID6 asked the number of days in a normal week individuals played sports or other keep-fit activities. Waves $2,4,68,9,11$ and COVID6 collected information on type of exercise participants engaged in; while waves 2, 4, 6, 8 and 10 collected information on attending classes outside of school including dance and sport. Active travel was collected at waves 1, 2, 4, 6, 8 , and 11 on the main method of travel to school (walk, bike, bus/tube, car, train, other).

Sedentary behaviour (hr/day) engaging in a range of activities such as television watching, pc use, and gaming was measured in waves $1,2,3,4,5,6,7,8,9,10,12$, and COVID6.Domestic activity (hr/week) is included at wave 10 and 12.

10.4 Physical activity overview (Adults: 16y+)

In the mainstage questionnaire (ages 16+), leisure time was measured at waves 2, 5, 7, 9, 11, 12, COVID1, COVID2, COVID5, and COVD7. Waves 2 and 5 collected information on frequency of specific sports in the past 12 months. Waves $7,9,11,12$, COVID1, COVID2, COVID5, and COVID7 asked questions, derived from the IPAQ [75], on vigorous and moderate physical activities in the last 7 days. Occupational activities were captured at waves 2,5 , and 11 , asking individuals to rate how physically active their occupation is (very, fairly, not very, not at all). Method of active travel was measured at waves 1, 2, 3, 4, $6,8,10,11,12$, COVID3, COVID6, COVID8, and COVID9. At waves $1,2,3,4,8,11,12$, COVID3, COVID6, COVID8, and COVID9 participants were asked about their mode of transport to work (cycling or walking); while in waves $1,4,6,8,10,12$, COVID3, COVID6, and COVID8 participants were asked how frequently they cycle (weekly to yearly). Domestic activities (hr/week) were measured at wave 1 , and COVID waves $1,2,3,5$, and 7 . Sedentary behaviour (hr/day), such as watching television, using the internet or social media, and gaming, was measured in waves $3,6,9,11,12$, and COVID5.

UKHLS is well designed for comparability of variables across time, with typically the exact same question wording and response scale used at different waves, providing direct comparability. For example, in adulthood, specific sports frequency at waves 2 and 5 are directly comparable. Similarly, waves 7 and 8 ask about past week vigorous and moderate exercise are directly comparable. To compare across all waves of LTPA (2,5, 7, 9, 11, and 12), specific sports from waves 2 and 5 may be categorised by intensity and compared on
the weekly/ non-weekly level. However, with occupation, active travel, domestic, and sedentary behaviour, each variable should have a corresponding variable in a following wave with which direct comparisons can be undertaken.

10.5 Data access

Understanding Society data are freely accessible to bona fide researchers by applying through the UK Data Service. More information on Understanding Society is available on the Understanding Society website.

11. Discussion and tables of comparable variables

The following sections summarise and compare the self-reported physical activity measures across five of the CLOSER partner studies: NSHD, NCDS, BCS70, ALSPAC, and MCS. We have not included UKHLS in our comparability section given its different study design as age cannot be separated out. Each study has collected a wealth of physical activity data across different domains, although the ages of collections and frequency of collections differs (see Table 1). We will summarise the study data available in childhood and adulthood in each domain: leisure, occupational, active travel, domestic, and sedentary behaviour. This will be followed by a discussion on the cross-study comparability of the variables at similar ages. This is intended to be illustrative rather than definitive or exhaustive; interested readers may well choose to make cross or withinstudy comparisons using different measures-see the electronic appendix for further detail.

Where questions and response scales are sufficiently comparable, it is possible to compare the absolute levels of activity between studies-this is noted in the text below. In
most instances however, due to differences in question wording, the measures are likely only comparable in terms of rank ordering, such that the relative ranking of participants from inactive to most active may be comparable across studies. While this does not enable comparison of absolute levels across studies, it may form the basis for cross-study comparisons of associations, where physical activity levels are the exposure or outcome of interest.

In terms of comparability, it is key to note that the COVID-19 pandemic changed the behaviour of many individuals, so the measures from these waves may not reflect "normal" activity had the pandemic not occurred.

Table 1. A high-level summary of physical activity measures across selected CLOSER partner studies

Age range of measure	Physical activity measure							
	Leisure time activity	Occupational activity	Active travel	Domestic activity	Sedentary behaviour	Accelerometry		
4-6y	BCS70,		ALSPAC,		ALSPAC,			
	ALSPAC,		MCS		MCS			
	MCS							
7-10y	BCS70,		ALSPAC,		ALSPAC,	MCS		
	ALSPAC,		MCS		MCS			
	MCS							
11-13y	NCDS, BCS70,		ALSPAC,		BCS70,	ALSPAC		
	ALSPAC, MCS		MCS		ALSPAC,			
					MCS			
14-16y	NCDS, BCS70,		ALSPAC, MCS	BCS70	BCS70, ALSPAC, MCS	ALSPAC, MCS		
	ALSPAC, MCS							
17-20y	MCS*		MCS	MCS*	MCS*			
22-29y	NCDS,		ALSPAC		NCDS,			
	ALSPAC*				ALSPAC*			
33-36y	NSHD, NCDS, BCS70	NSHD, NCDS	NCDS, NSHD	NSHD, NCDS				
42-46y	NSHD, NCDS, BCS70	NCDS, BCS70	NCDS	NSHD,	NCDS, BCS70	BCS70		
				NCDS,				
				BCS70				
50-55y	NSHD, NCDS, BCS70*	NCDS		NSHD, NCDS, BCS70*				
60-64y	NSHD, NCDS*	NSHD	NSHD	NSHD,	NSHD,	NSHD		
				NCDS*	NCDS*			
68-74y	NSHD*			NSHD*	NSHD*	NSHD		

Notes: NSHD: MRC National Survey of Health and Development (1946); NCDS: National Child Development Study (1958); BCS70: British Cohort Study 1970; ALSPAC: Avon Longitudinal Study of Parents and Children (1991-1992); MCS: Millennium Cohort Study (2001).

Accelerometry - MCS: $7 y=$ Actigraph GT1M accelerometer, $14 y=$ GENEActiv accelerometer; ALSPAC: 12, 14, 16, $25 y$ = Actigraph accelerometer; BCS70: 46-48y = ActivPal accelerometer; NSHD: 60-64y = ActiHeart actigraph, $69 y=$ GCDC X15-1c triaxial accelerometer .

Only main study members are included, parents/carer information or other family members are excluded (e.g. ALSPAC mothers).

* indicates data from a COVID-19 survey wave is included (there may also be data from non-COVID waves from that study in the specified age range)

11.1 Leisure time physical activity

Leisure time physical activity (LTPA) is the most frequently measured domain, with data collected from ages 4-74y across ALSPAC, MCS, BCS70, NCDS, and NSHD (see Tables 2-5 for details on these variables). For exercise-related questions, participants were often asked to indicate from a show card what activities they typically engaged in, and the duration and frequency of these. Additional LTPA questions captured participation in sports classes, involvement in sports clubs and teams, and use of recreational areas such as parks and playgrounds.

LTPA participation, Table 2:

- ALSPAC $13 y$ and BCS70 16y ask similar questions about sports engagement over the past weekend (ALSPAC: "Which activities did you do last weekend?"; BCS70: "Did you take any exercise last Saturday?") with responses comparable on the activities engaged in (i.e. swimming, cycling, walking). These may therefore be comparable in terms of absolute physical activity levels. Since the MCS 14y question was on a different scale, it is only likely comparable in terms of relative ranking of activity levels (MCS: "On how many days in the last week did you do a total of at least an hour of moderate to vigorous physical activity?")
- BCS70 30y, NSHD 31y, and NCDS 33y ask similar questions on general physical activity engagement (BCS70/NCDS: "Do you regularly take part in exercise/sport activities?", "How often do you take part in these exercise/sports activities?", "When you take part in these exercise/sports activities, do you get out of breath or sweaty?"; NSHD: "Please ring the codes below indicating any sports or keep fit activities you take part in and showing how often you do these things (during the season).") with responses of frequency (monthly/weekly) and specific activities engaged in comparable across measures.
- NCDS 42y and NSHD 43y each ask similar questions on general LTPA engagement (NCDS: "Do you regularly take part in exercise/sport activities?" How often do you take part in these exercise/sports activities? When you take part in these exercise/sports activities, do you get out of breath or sweaty?"; NSHD: "Do you regularly take part in any sports or vigorous leisure activities or do any exercises? (If yes please list) "How often do you do this? On average how long do you spend doing this?") with responses of frequency (monthly/weekly) and intensity of specific activity engaged in comparable across measures. In contrast, BCS70 42y also asks a general question on LTPA engagement but uses a different question and response scale (BCS70: "On how many days in a typical week do you do 30 minutes or more of exercise"; responses: none, less often, 2-3x month, 1 x week, 1 x week, $2-3 \mathrm{x}$ week, $4-5 \mathrm{x}$ week, daily).
- BCS70 42 y and NCDS 44y ask similar questions on specific activities in the past year (BCS70: "How often have you done each of the following sporting activities in the last 12 months?"; NCDS: "How often on average, did you do this last year?" "Average time per episode?") with responses of frequency (monthly/weekly/daily) and specific activities engaged in comparable across measures.
- NSHD $53 y$ and NCDS 55y ask similar questions comparing the frequency (occurrences/week) of physical activity (NSHD: "In the last 4 weeks, have you taken part in any sports or vigorous leisure activities or done any exercises in your spare time, not including getting to and from work, for 30 minutes or more?"; NCDS: "Whether you take part in the following activities and frequently 1) Play sport or go walking or swimming; 2) Attend leisure activity groups such as evening classes, keep fit, yoga etc.")
- The NSHD, NCDS, BCS70, and MCS all carried out the same COVID-19 survey so the measures are identical across the studies. The same two questions on leisure activity were asked in the COVID-19 Wave 1 and 2 surveys ("In the month before the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or
more of exercise where you are working hard enough to raise your heart rate and break into a sweat?" and "How many hours have you been spending doing each of the following activities on a typical week day in the last two weeks?"). These questions capture the frequency, duration, and intensity so it may be possible to compare to earlier waves with some recoding of scales.

Use of parks and/or recreation facilities, Table 3:

- ALSPAC $5 y, 6 y$ and MCS $5 y, 7 y$, ask similar questions on park and recreational use (ALSPAC: "About how often does your child do the following... go to public park or playground"; MCS: "(How often do you...) take [^Cohort child's name] to the park or to an outdoor playground?") and can be compared in frequency (never, yearly, monthly, weekly, daily). These may therefore be comparable in terms of absolute physical activity levels.
- BCS70 16y asks about past year trips ("Been in sports-community centre in last year? Number of times?") and ALSPAC 18y ("In the last four weeks, have you been to or used the following things - Parks and other open spaces?") may be compared in incidence of visiting recreational areas over the past month or year.

Participation in sports classes, Table 4:

- ALSPAC $4 y, 5 y, 6 y, 7 y, 8 y, 9 y, 11 y$ and MCS $5 y, 7 y, 11 y$ ask similar questions about attending sports clubs and classes (ALSPAC: "About how often does your child do the following during term time... go to special classes or clubs for some activity (e.g. dancing, judo, sports)"; MCS: "On average how many days a week does [^Cohort child's name] go to a club or class to do sport or any other physical activity like swimming, gymnastics, football, dancing etc?") and may be compared in frequency (weekly/non-weekly; occurrences/week) levels.

Participation in sports clubs/teams, Table 5:

- MCS 11y and ALSPAC 16y both ask questions on sports participation (MCS: "How often does she usually go out to youth, sports clubs or groups? What kind of club? What sports does she do?"; ALSPAC: "How often does she usually go out to youth, sports clubs or groups? What kind of club? What sports does she do?") and are comparable in frequency (weekly/ non weekly). Since the NCDS 11y question was on a different scale, it is only likely comparable in terms of relative ranking of activity levels (NCDS:
"Playing outdoor games or taking part in sports outside school hours", responses: never or hardly ever, sometimes, often).

Table 2. LTPA and/or exercise participation-comparable questions across childhood and adulthood from selected CLOSER partner studies

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
13	ALSPAC	$\begin{aligned} & \text { ccp430 ccp450- } \\ & \text { ccp443 сcp463 } \end{aligned}$	"Which activities did you do last weekend?"	Yes/no	Swimming, walk, cycled, played in football (or other) match	Past weekend
14	MCS	FCPHEX00	"On how many days in the last week did you do a total of at least an hour of moderate to vigorous physical activity?"	Never, 1-2, 3-4, 5- 6, everyday		Past week
16	BCS70	F20A1-f20b43	"In past year, participation in a range of individual activities, in school or out of school..."	None, 1x monthly, 1x weekly	Baseball, basketball, cricket, football, hockey, netball, rounders, rugby, volleyball, individual activities (aerobics, tennis etc.), other	Past 12 months
16	BCS70	jc22-jc22a9	"Did you take any exercise last Saturday?"	Yes/no	Walking >1 mile, running, jogging >1 mile, cycling >1mile, swimming >4 lengths, dancing, indoor sports, outdoor sports, exercise/keep fit, other	Last Saturday
17	MCS	GCPHEX00	"On how many days in the last week did you do a total of at least an hour of moderate to vigorous physical activity?"	Never, 1-2, 3-4, 5- 6, everyday		Past week
22	ALSPAC	YPB2040	"Do you take part in any strenuous/vigorous physical activity (e.g. rugby, football, netball, tennis, badminton, running, gym etc)?"	Never, less than monthly, once a fortnight, weekly,		Past week

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
				2-4x week, $5+x$ week		
30	BCS70	exercise breathls sweat	"Do you regularly take part in exercise/sport activities?" How often do you take part in these exercise/sports activities? When you take part in these exercise/sports activities, do you get out of breath or sweaty?	Never, 2-3x month, $1 x$ week, 2-3x week, 4-5x week, daily	Take part in competitive sport of any kind, go to 'keep fit' or aerobics classes, go running or jogging, go swimming, go cycling, go for walks, take part in water sports, take part in outdoor sports, go dancing, take part in any other sport or leisure activity which involves physical exercise	Not specified
31	NSHD	SWIM77 CYCL77 SQUAS77 KFIT77 OACTS77	"Please ring the codes below indicating any sports or keep fit activities you take part in and showing how often you do these things (during the season)."	Never, several times a year, 1 x month, 1 x week	Swimming, cycling, squash/tennis/badminton, keep fit, other	Not specified
33	NCDS	N504362 N504363	"Do you regularly take part in exercise/sport activities?" How often do you take part in these exercise/sports activities? When you take part in these exercise/sports activities, do you get out of breath or sweaty?	Never, 2-3x month, $1 \times$ week, 2-3x week, $4-5 x$ week, daily	Take part in competitive sport of any kind, go to 'keep fit' or aerobics classes, go running or jogging, go swimming, go	Not specified

Age Study	Variable name	Question wording	Response	Included activities
scale(s)				

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
					table tennis, tennis, yoga, water skiing, volleyball, scuba diving, basketball, fishing, riding, movement to music, weight training, ballroom dancing, other	
42	BCS70	B9EXERSE	"On how many days in a typical week do you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	30 min or more 0-7 days	*	Past week
42	NCDS	exercise breathls sweat	"Do you regularly take part in exercise/sport activities? How often do you take part in these exercise/sports activities? When you take part in these exercise/sports activities, do you get out of breath or sweaty?	Less often, 2-3x month, 1 x week, 2-3x week, $4-5 x$ week, daily	Take part in competitive sport of any kind, go to 'keep fit' or aerobics classes, go running or jogging, go swimming, go cycling, go for walks, take part in water sports, take part in outdoor sports, go dancing, take part in any other sport or leisure activity which involves physical exercise	Not specified
42	BCS70	b9scq2a-b9scq2o	"How often have you done each of the following sporting activities in the last 12 months?"	None, less often, 2-3x month, $1 x$ week, 1 x week, 2-	Health/fitness/gym/conditioning activities, swimming or diving, cycling, dancing, jogging,	Past 12 months

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
				3 x week, $4-5 \mathrm{x}$ week, daily	walking for pleasure/rambling, racquet sports (tennis etc.), team sports (football), martial arts, water sports (rowing etc.), horse riding, yoga/Pilates, golf, skiing, other	
43	NSHD	EXER89-EX4SW89	"Do you regularly take part in any sports or vigorous leisure activities or do any exercises? (If yes please list) "How often do you do this? On average how long do you spend doing this?	Minutes; hours; < 1x month, <1 x week, 1 x week, >1x week		Not specified
44/45	NCDS	swimslo swimsloh swimslom - exoth2 exoth 2 h exoth 2 m	"How often on average, did you do this last year?" "Average time per episode?"	Minutes; hours None, <1x month, 2-3x month, $1 x$ week, 2-3x week, 2-4x week, daily	Leisurely swimming; competitive swimming; walking for pleasure; backpacking, hill walking, or mountain climbing; cycling for pleasure ; racing or rough terrain cycling ; high impact aerobics, step aerobics ; other aerobics; exercises with weights; conditioning exercises ("e.g., using an exercise bike or rowing machine"); floor exercises ("e.g.,	Past 12 months

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
					stretching, bending, keep fit"); dancing ("e.g. Ballroom, disco"); competitive running; jogging; bowling; tennis or badminton; squash; table tennis; golf; football, rugby or hockey; cricket; rowing; netball, volleyball, basketball; fishing; horse riding; snooker, billiards, darts; musical instrument playing; ice skating; sailing, windsurfing, boating; winter sports ("e.g., skiing"); martial arts/boxing/wrestling; other exercises ("please specify")	
46	NCDS	n7exers1 n7breals n7sweat	"Do you regularly take part in exercise/sport activities? How often do you take part in any activity of this type? When you participate in any activity of this type, would you say you got out of breath or sweaty	Less often, 2-3x month, $1 \times$ week, 2-3x week, 4-5x week, daily	Take part in competitive sport of any kind, go to 'keep fit' or aerobics classes, go running or jogging, go swimming, go cycling, go for walks, take part in water sports, take part in	Not specified

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
					outdoor sports, go dancing, take part in any other sport or leisure activity which involves physical exercise	
50	NCDS	N8EXERSE N8BREALS N8SWEAT	"Do you regularly take part in any physical activities or exercise? How often do you take part in any activity of this type? When you participate in any activity of this type, would you say you got out of breath or sweaty	Less often, 2-3x month, $1 \times$ week, 2-3x week, 4-5x week, daily	Competitive sport of any kind, 'keep fit' or aerobics classes, running or jogging, swimming, cycling, walks, water sports, outdoor sports, dancing, other leisure activity which involves physical exercise	Not specified
50	BCS70	CW1_EXCISEPP CW2_EXCISEPP	"In the month before the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week		Month prior to pandemic
50	BCS70	CW1_EXCISESP CW2_EXCISESP	"Since the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week		Since the pandemic started
50	BCS70	CW1_Timeuse1_8_1 CW2_Timeuse_8	"How many hours have you been spending doing each of the following activities on a typical weekday since the Coronavirus outbreak began?"	Hours per day	Physical activity / exercise	Typical weekday since

Age	Study	Variable name	Question wording	Response scale(s)		Timespan of recall
						pandemic started
53	NSHD	EXER EXERN	"In the last 4 weeks, have you taken part in any sports or vigorous leisure activities or done any exercises in your spare time, not including getting to and from work, for 30 minutes or more?"	30 min or more Occurrences/week	*	Past 4 weeks
55	NCDS	N9LEIS01 N9LEIS05	"Whether you take part in the following activities and frequently 1) Play sport or go walking or swimming; 2) Attend leisure activity groups such as evening classes, keep fit, yoga etc"	Never, several times a year, 1 x month, 1 x week	Play sport or go walking or swimming. Attend leisure activity groups such as evening classes, keep fit, yoga etc.	Not specified
60-64	NSHD	WEXER09 WEXEN09 WEXES09	"In the last 4 weeks, in your spare time, have you taken part in any sports or vigorous leisure activities or done any exercises, things like badminton, swimming, yoga, press-ups, dancing, football, mountain climbing or jogging"	Yes / No Number of times last month	Badminton, swimming, yoga, press-ups, dancing, football, mountain climbing or jogging	Past 4 weeks
60-64	NSHD	Overall variables: YEXER09 (exercise activities), GYM09 (Gym activities), ACT09 (Other activities), GAM09 (Games/sports)	Did you do any of the following activities in the last 12 months	Not done in last year, <once a month, once a month; 2-3x month, 1 x week, 2-3 x week, $4-5 x$ week, 6 x week, every day	Swimming (leisurely \& competitive), walking for pleasure, backpacking/hill walking/mountain climbing, jogging, competitive running, cycling for pleasure, racing through rough terrain cycling. High impact aerobics, other	Past 12 months

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
		Variables per activity: N prefix = frequency H prefix = Hours per episode M prefix $=$ Mins per episode		Hours of average time per episode Mins of average time per episode	aerobics, exercises with weights, conditioning exercises, floor exercises. Dancing, musical instrument playing, horse riding, fishing, rowing, sailing/windsurfing/boating, iceskating, winter sports, martial arts/boxing/wrestling. Snooker/billiards/darts, bowling (indoor, lawn or ten pin), tennis/badminton, squash, table tennis, golf, netball/volleyball/basketball, football/rugby/hockey, cricket.	
62	NCDS	CW1_EXCISEPP CW2_EXCISEPP	"In the month before the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week	*	Month prior to pandemic
62	NCDS	CW1_EXCISESP CW2_EXCISESP	"Since the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week	*	Since the pandemic started

Age	Study	Variable name	Question wording	Response scale(s)	Included activities	Timespan of recall
62	NCDS	$\begin{aligned} & \text { CW1_Timeuse1_8_1 } \\ & \text { CW2_Timeuse_8 } \end{aligned}$	"How many hours have you been spending doing each of the following activities on a typical weekday since the Coronavirus outbreak began?"	Hours per day	Physical activity / exercise	Typical weekday since pandemic started
74	NSHD	CW1_EXCISEPP CW2_EXCISEPP	"In the month before the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week	*	Month prior to pandemic
74	NSHD	CW1_EXCISESP CW2_EXCISESP	"Since the start of the Coronavirus outbreak, on how many days in a typical week did you do 30 minutes or more of exercise where you are working hard enough to raise your heart rate and break into a sweat?"	Number of days in a week	*	Since the pandemic started
74	NSHD	$\begin{aligned} & \text { CW1_Timeuse1_8_1 } \\ & \text { CW2_Timeuse_8 } \end{aligned}$	"How many hours have you been spending doing each of the following activities on a typical weekday since the Coronavirus outbreak began?"	Hours per day	Physical activity / exercise	Typical weekday since pandemic started

[^0]Table 3. LTPA/use of park or recreational areas-comparable questions across childhood and adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Timespan of recall
BCS70	5	e242	"In the past 7 days has CM been went to a park, recreation ground, adventure playground?"	Yes/no	Past week
ALSPAC	5	kn3123	"About how often does your child do the following.... go to public park or playground "	Never, 1-2x year, few times year, 1x month, 1x week, 2-5x week, daily	Not specified
MCS	5	cmwalk	"(How often do you...) take ^Cohort child's name to the park or to an outdoor playground?"	Never, less often, 1-2x month, 1-2x week, several times a week, daily	Not specified
ALSPAC	6	kp6073	"About how often does your child do the following... go to public park or playground"	Never, 1-2x year, few times year, 1x month, 1 x week, 2-5x week, daily	Not specified
MCS	7	dmwalk	"(How often do you...) take ^Cohort child's name to the park or to an outdoor playground?"	Never, less often, 1-2x month, 1-2x week, several times a week, daily	Not specified
BCS70	16	jc23	"Been in sports-community centre in last year? Number of times?"	Occasionally, 1-2x past month, 1x week, >1x week	Past year
ALSPAC	18	cct1001	"In the last four weeks, have you been to or used the following things - Parks and other open spaces?"	Yes/no	Past 4 weeks

Table 4. LTPA/participation in sports classes frequency-comparable questions across childhood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities
ALSPAC	4	kl447	"About how often does your child do the following during term time...? Go to special classes or clubs for some activity (e.g. dancing, judo, sports)"	Never, yearly, monthly, once a week, 2-6x week, daily	Sports classes
ALSPAC	5	km4354	"About how often does your child do the following during term time...? Go to special classes or clubs for some activity (e.g. dancing, judo, sports)"	Never, yearly, monthly, once a week, 2-6x week, daily	Sports classes
MCS	5	cmseho	"On average how many days a week does ^Cohort child's name go to a club or class to do sport or any other physical activity like swimming, gymnastics, football, dancing etc.?"	Never, 1 x week, 2 x week, 3 x week, 4 x week, $5+$ week	Sports classes
ALSPAC	6	kq564	"About how often does your child do the following? Go to special classes or clubs for some activity (e.g. dancing, judo, sports)"	Never, yearly, monthly, once a week, 2-5x week, daily	Sports classes
MCS	7	SEHO	"On average how many days a week does ^Cohort child's name go to a club or class to do sport or any other physical activity like swimming, gymnastics, football, dancing etc.?"	Never, <1x week, 1x week, 2 x week, 3 x week, 4 x week, 5+ week	Sports classes
ALSPAC	8	kt3006	"About how often does your child do the following go to special classes or clubs for some activity (e.g. dancing, judo, sports)"	Never, yearly, monthly, once a week, 2-5x week, daily	Sports classes
ALSPAC	9	ku525	"About how often does your child do the following...? Go to special classes or clubs for some activity (e.g. dancing, judo, sports)"	Never, <monthly, 1-3x month, 1x week, 2-5x week, daily	Sports classes

Study	Age	Name	Question wording	Response scale	Included activities
ALSPAC	11	kw9005	"About how often does your child do the following...? Go to special classes or clubs for some activity (e.g. dancing, judo, football, other sports)"	Never, <monthly, 1-3x month, $1 \times$ week, 2-5x week, daily	Sports classes
MCS	11	EPSEHOOO	"On average how many days a week does ^Cohort child's name go to a club or class to do sport or any other physical activity like swimming, gymnastics, football, dancing etc.?"	Never, <1x week, 1x week, 2x week, 3x week, 4x week, $5+$ week	Sports classes

Table 5. LTPA/participation frequency in sports teams and clubs-comparable questions across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
NCDS	11	N941	"Playing outdoor games or taking part in sports outside school hours "	Never or hardly ever, sometimes, often	*	Not specified
MCS	11	ECQ03X00	"How often do you play sports or active games inside or outside, not at school?"	Never, <1x month, $1 \times$ month, $1 \times$ week, daily	*	Not specified
ALSPAC	16	tc3031- tc3061	"How often does she usually go out to youth, sports clubs or groups? What kind of club? What sports does she do?"	Never, < 1x week, 1x week, most evenings	Keep fit, aerobics or dancing classes, tennis, swimming, wrestling, gymnastics, martial arts, football, boxing, netball, weight training, hockey, other	Not specified

*participation in individual activities was not recorded

11.2 Occupational activity

Occupational activity is the most sparsely measured domain, with data collected only across NSHD, NCDS, and BCS70 from ages 33-64y (Table 6). Participants indicated a number of work-related activities they regularly engaged in, including sitting, standing, taking stairs, walking, and moving/pushing heavy objects.

Occupational activity, Table 6:

- NCDS 33y asks about general physical activity at work ("how much physical effort is involved in your job") while NSHD 36y asks about frequency of specific activities ("Time spent a) sitting b) walking, c) lifting during course of work"), although both use the same response options (none, a little, some, a lot)).
- NSHD 43y and NCDS 44y ask similar questions about activities engaged in at work (NSHD: "At work do you regularly do any heavy lifting, carrying, or digging or other strenuous activities?"; NCDS: "Have you done each activity at work in the last year?") and the included activities can be compared (NSHD: heavy lifting and carrying objects, NCDS: moving/pushing heavy objects).
- BCS70 46y, NCDS 50y, and NCDS 55y all ask the same question about the physical activity involved at work ("We would like to know the types and amount of physical activity involved in your work. Which of the following best corresponds to your present activities?") with the response option of "sitting occupation, standing occupation, physical work, or heavy manual work".
- NCDS 44y, BCS70 46y, and NSHD 60-64y all ask the same question about climbing stairs and ladders at work ("At work, how many times a day do you normally a) Climb up a flight of stairs (10 steps), b) Climb up a ladder?").
- NCDS 44y and NSHD 60-64y ask the same question about activities carried out at work over the past year and how many hours per week is spent on each activity, including
different types of sitting and standing work, as well as walking and carrying or manoeuvring heavy objects ("Have you done each activity at work in the last year?").

Table 6. Physical effort at work - comparable questions across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
NCDS	33	N504361	"How much physical effort is involved in your job"	None, a little, some, a lot	*	Not specified
NSHD	36	SIT82 WALK82 LIFT82	"Time spent a) sitting b) walking, c) lifting during course of work"	Little, very little, moderate, a lot None, less than half, about half, > half, practically all the time	Walking, sitting, heavy objects	Not specified
NSHD	43	LIFT89	"At work do you regularly do any heavy lifting, carrying, or digging or other strenuous activities?"	Not at all, <1 hr a day, 1- 2 hr a day, up to half a day, > half the day	Heavy lifting, carrying, digging, strenuous activities	Not specified
NCDS	44	sitlt sitlthr sitmod sitmodhr stdlt stdlthr stdlm stdlmhr stdmod stdmodhr stdmh stdmhhr wlkhv wlkhvhr movob movobhr wkoth1hr wkoth2hr	"Have you done each activity at work in the last year? Sitting - light work / Sitting - moderate work / Standing - light work / Standing - light-moderate work / Standing - moderate work / Standing - moderate-heavy work / Walking at work - carrying nothing heavier than a briefcase / Walking - carrying something heavy / Moving, pushing heavy objects / Other activities"	Yes, No Hours/week	Sitting, standing, walking, moving/pushing heavy objects, other activities	In past year
NCDS	44	wkstair wkladd	"At work, how many times a day do you normally: a) Climb up a flight of stairs (10 steps), b) Climb up a ladder"	Occurrences/day	Stairs, ladder	Not specified

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
BCS70	46	B10Q19	"We would like to know the types and amount of physical activity involved in your work. Which of the following best corresponds to your present activities?"		Sitting occupation, standing occupation, physical work, heavy manual work	Not specified
BCS70	46	$\begin{aligned} & \text { B10Q20A } \\ & \text { B10Q20B } \end{aligned}$	"a) Number of times you climb up a flight of stairs (approx. 10 steps) at work". "b) Number of times you climb up a ladder at work"	None, 1-5 times, 6-10 times, 11-15 times, 16 to 20 times, more than 20 times a day	Stairs, ladder	Not specified
BCS70	46	B10Q21A B10Q21B B10Q21C	"On average working day do you: a) kneel for more than one hour in total, b) squat for more than one hour in total, c) get up from kneeling/squatting over 30 times"	Yes, No	Kneeling, squatting, getting up	Not specified
NCDS	50	N8PHYSWK	"Physical activities involved in your work. Which option best correspond to your present activities?"		Sitting, standing, physical work, heavy manual work	Not specified
NCDS	55	N9PHYSWK	"Physical activities involved in your work. Which option best correspond to your present activities?"		Sitting, standing, physical work, heavy manual work	Not specified
NSHD	60- 64	STUFN09 LADUN09	"At work, how many times a day do you normally a) Climb up a flight of stairs (10 steps), b) Climb up a ladder?"	Occurrencescos/day	Stairs, ladder	Not specified
NSHD	6064	ASIL09 HSIL09 ASIM09 HSIM09 ASTL09 HSTL09 ASTLM09	"Have you done each activity at work in the last year? Sitting - light work / Sitting - moderate work / Standing - light work /	Yes, No [A vars] Hours per week [H vars]	Sitting, standing, walking,	Past year

Study Age	Name	Question wording	Response scale(s)	Included activities

*participation in individual activities was not recorded

11.3 Active travel

Active travel was measured many times across the longitudinal studies from ages $4 y$ to 6064y, with data collected in ALPAC, MCS, BCS70, NCDS, and NSHD (tables 7-9). Largely, there were three different themes of active travel including (1) travel to school/ childcare/ and college, (2) travel to work, and (3) general and/or other nonspecific travel. Typically, active travel responses were either in walking or cycling, but in one case (ALSPAC age 13y) responses of skateboarding and scooter were also provided.

Travel to school (Table 7):

- ALSPAC $6 y, 8 y, 13 y, 16 y$ and MCS $5 y, 7 y$, and $14 y$ ask identical questions on travel to school ("how does [cohort member] get to school and back"), and the method of active travel (walking or cycling) can be compared across all measures. Additionally, responses in duration (minutes) can be compared in MCS 14y and ALSPAC 13y and 16y. These may therefore be comparable in terms of absolute physical activity levels.
- BCS70 16y asks specifically about cycling ("use of bicycle in last 2 weeks: a) to go to school") and may be compared to ALSPAC 13y, 16y and MCS 14y questions on use of cycling.
- ALSPAC 16 y and MCS 17 y asks about travel to school or work but the destination is not specified in the responses so these may not be comparable to school-specific questions, unless combined with variables about whether the cohort member is at school or working.

Active travel to work (Table 8):

- ALSPAC 16y and MCS 17y ask about travel to school or work (with the destination not specified in the responses) so may need to be combined with other variables determining work or education status to be comparable with other work-specific questions.
- NSHD 36y and NCDS 44y ask similar questions on travel to work (NSHD: a) "Do you normally use a bike on your way to work, or for part of the way?" b) "On your way to work do you normally walk for five minutes of more on each journey?"; NCDS: "How do you usually travel to work?"), and activity engaged in (cycling or walking) is comparable across measures.
- NSHD 36y and NCDS 44y both measure duration, although response options are in different units (NSHD: minutes; NCDS: miles). However, these could potentially be converted (e.g. using the average minutes per mile) to derive a common measure of duration.
- Although further apart in age, NCDS 44y and NSHD 60-64y both include a measure of distance walked or cycled. However, the NCDS continuous responses would need to be categorised to be comparable with the response categories in NSHD.

General active travel (Table 9):

- While there appear to be no measures at similar ages, ALSPAC 22y, BCS70 34y, and NCDS 46y ask similar questions on general travel (i.e. ALSPAC: "Do you make regular journeys every day or most days"; BCS70/NCDS: "what is your main form of transport"), with comparable activities (cycling or walking) across each measure.
- NCDS 44y and NSHD 60-64y ask similar questions about weekly non-work journeys by foot or bicycle, but the continuous responses (miles) from NCDS would need to be categorised to match the responses from NSHD. Also, NCDS asks about an average week while NSHD specifies the past week.

Table 7. Travel to school -comparable questions across childhood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
ALSPAC	4	kk435 kk436 kk445 kk446 km4195 km4205	"How does cm get to school/childcare and back"	Every day/ some days	Cycling \& walking	Not specified
ALSPAC	5	km4190 km4200 km4195 km4205 km4210 km4211	"How does cm get to school /childcare and back"	Minutes; kilometres Every day/ some days	Cycling \& walking	Not specified
MCS	5	cmtrsc cmtrho cmtrdi	"How does cm get to school and back"		Cycling \& walking	Not specified
ALSPAC	6	kp1080 kp1090 kp1085 kp1095 kp1100 kp1101	"How does cm get to school and back"	Minutes; kilometres Every day/ some days	Cycling \& walking	Not specified
MCS	7	dmtrsc dmtrho dmtrdi	"How does cm get to school and back"		Cycling \& walking	Not specified
ALSPAC	8	kt1010 kt1020 kt1015 kt1025 kt1030 kt1031	"How does cm get to school and back"	Minutes; kilometres Every day/ some days	Cycling \& walking	Not specified
ALSPAC	13	$\begin{aligned} & \operatorname{ccp} 210 \quad \operatorname{ccp} 211 \\ & \operatorname{ccp} 215 \end{aligned} \operatorname{ccp} 217$	"How does cm get to school and back"	Minutes	 skateboard/scooter	Not specified

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
MCS	14	FPTRSC00 FPTRHOOO TRDI FPTRDI00	"How does cm get to school and back"	Minutes	Cycling \& walking	Not specified
ALSPAC	16	ccs7000- $\operatorname{ccs} 7045$	"How did you get to school/college(/work) today"	Minutes	Cycling \& walking	Today/ last time journey was made
BCS70	16	f9a1-f9a6	"Use of bicycle in last 2 weeks: a) to go to school..."	Yes/no	Cycling	Past 2 weeks
MCS	17	GCTRSC00	"Now thinking about getting to the place you study or work. How do you usually travel? Please tell us which method you use for the longest part of your usual journey."		Public transport, School or local authority bus, minibus or coach, Car or other vehicle, Bicycle, Walking, Other	Not specified
MCS	17	GCCYCF00	"How often do you use a bicycle? Please include travel to and from work, training, school, college or university."	Every day or almost every day, several times a week, once or twice a week, at least once a month, every few months, at least once a year, less often or never, do not use a bicycle	Cycling	Not specified

Table 8. Travel to work-comparable questions across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
NSHD	36	BIKE82 BIKED82 BIKEL82	"Do you normally use a bike on your way to work, or for part of the way?"	Minutes Days/week	Cycling	Not specified
NSHD	36	WALKW82 WALKWT82	"On your way to work do you normally walk for five minutes or more on each journey?"	Minutes	Walking	Not specified
NCDS	44	wkbike wkwalk wkmiles wktrips	"How do you usually travel to work?	Miles Day/week	 walking	Not specified
NSHD	$\begin{aligned} & 60- \\ & 64 \end{aligned}$	JWA09 HWJ09 HCJ09	"How many journeys do you make between home and work in an average week?" "How far do you walk on each journey?" "How far do you cycle on each journey?"	Number of journeys No distance, less than 0.5 miles, $0.5-1.5$ miles, 1.5-2.5 miles, 2.5-3.5 miles, 3.5- 5.5 miles, more than 5.5 miles	Walking \& cycling	Not specified

Table 9. General travel-comparable questions across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
ALSPAC	22	YPB2000 YPB2010 YPB2020	"Do you make regular journeys every day or most days: walking	Hours/week	Walking	Average week
ALSPAC	22	YPB2000 YPB2030	"Do you make regular journeys every day or most days: cycling"	Hours/week	Cycling	Average week
BCS70	34	b7tranrt	"What is your main form of transport"		Cycling \& walking	Not specified
NCDS	46	n7tranrt	"What is your main form of transport"		 walking	Not specified
NCDS	44	biketot bikeless bikeone biketwo bikethre bikefive bikemore	"Apart from journeys to work, number of journeys do you make in an average week: by bicycle "	Miles Journeys/week	Cycling	Average week
NCDS	44	walktot walkless walkone walktwo walkthre walkfive walkmore	"Apart from journeys to work, number of journeys do you make in an average week: walking "	Miles Journeys/week	Walking	Average week
NSHD	60-64	JBI09 JBI109 JBI209 JBI309 JBI409 JBI509 JBI609	"Apart from journeys to work, have you made any journeys by bicycle in the last 7 days?"	<0.5 miles, 0.5 to 1.5 miles, 1.5 to 2.5 miles, 2.5 to 3.5 miles, 3.5 to 5.5 miles, >5.5 miles	Cycling	Past 7 days

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
NSHD	$60-64$	JFT09 JFT109 JFT209 JFT309	"Apart from journeys to work, have you made any	<0.5 miles, 0.5 to 1.5 miles,	Walking	Past 7 days
		JFT409 JFT509 JFT609	journeys by foot in the last 7 days?"	1.5 to 2.5 miles, 2.5 to 3.5		
			miles, 3.5 to 5.5 miles, >5.5			
			miles			

11.4 Domestic activities

Domestic activities were measured across ages $16 y$ to $74 y$ with data collected in the MCS, BCS70, NCDS, and NSHD studies (Table 10). A range of activities were included in the questions across this domain such as housework, shopping, cleaning, and building work. However, gardening and do-it-yourself (DIY) was the activity which appeared most frequently.

Domestic activities, Table 10:

- While there was limited overlap across studies at similar ages, NSHD 43y and NCDS 44y ask questions regarding domestic activities (NSHD: (1) "Do you regularly do any heavy gardening apart from paid work?" (2) "Do you regularly do any heavy building or DIY apart from paid work?"; NCDS: "How often on average, did you do this last year?"). Both measures identify to gardening or building/DIY activities and include similar responses categories capturing duration (minutes; hours) and frequency (monthly/weekly).
- Although not at a similar age, BCS70 46y and NSHD 60-64y asked a similar question regarding frequency and duration of domestic activities in the past 12 months which included the same activities ("Mowing the lawn, watering the lawn/garden, digging/shovelling/chopping wood, weeding/pruning, DIY (carpentry, home or car maintenance)") and the same units of duration (hours and minutes). However, NSHD only asked whether the activities were carried out (yes/no), whereas BCS70 gave more detailed options about occasions per month or week.
- The joint COVID-19 survey including MCS, BCS70, NCDS, and NSHD asked questions in Waves 1 and 2 about time spent doing "housework (e.g. cleaning, laundry, cooking, DIY)". This is directly comparable across the studies and ages ($18-20 y, 50 y, 62 y$, and $74 y)$.

Table 10. Duration and frequency of domestic activities-comparable questions across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
BCS70	16	f18	"Do you help at home (e.g. Housework/gardening)"	Never, sometimes, most days, everyday	Housework/gardening	Not specified
BCS70	16	gb12_1-gb12_12	"What kind of things do you help with at home"	Never, sometimes, rarely, regularly	Shopping, washing up, cleaning the house, making the beds, cooking, looking after elderly relatives / pets / younger children, washing, gardening, cleaning car, DIY	Not specified
MCS	$\begin{aligned} & 18- \\ & 20 \end{aligned}$	$\begin{aligned} & \text { CW1_Timeuse1_6_ } \\ & 1 \text { CW2_Timeuse_6 } \end{aligned}$	"How many hours have you been spending doing each of the following activities on a typical weekday in the last two weeks?"	Hours/day	Housework (e.g. cleaning, laundry, cooking, DIY)	Past 2 weeks
NSHD	36	BRCKN82 BRCKH82- APPLN82 APPLH82	"Have you done any of the DIY things in the past 4 weeks?"	Hours/month Occurrences/month	Building work (various activities listed)	Past 4 weeks
NSHD	36	RUFGN82 RUFGH82 - HOEN82 HOEH82	"Have you done any of these things in the garden in the last 4 weeks?"	Hours/month Occurrences/month	Gardening (various activities listed)	Past 4 weeks
NSHD	43	HWK89-HWKSW89	"Do you regularly do any vigorous household work or cleaning apart from paid work, how often?"	Minutes; hours < monthly, < 1x weekly, 1x weekly, > 1x weekly	Housework	Not specified

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
NSHD	43	GDN89 - GDNSW89	"Do you regularly do any heavy gardening apart from paid work?"	Minutes; hours <monthly, < 1x weekly, 1x weekly, > 1x weekly	Gardening	Not specified
NSHD	43	DIY89-DIYSW89	"Do you regularly do any heavy building or DIY apart from paid work?"	Minutes; hours <monthly, < 1x weekly, 1x weekly, > 1x weekly	Building/ DIY	Not specified
NCDS	44	lawnmo - diym	"How often on average, did you do this last year?"	Minutes; hours None, <1x monthly, 1x month; 2$3 x$ monthly, $1 x$ week, $2-3 x$ a weekly, 4-5x a weekly, daily	Mowing the lawn; watering the lawn or garden in the summer; digging, shovelling or chopping wood; weeding or pruning; DIY (e.g. "carpentry, home or car maintenance")	Not specified
BCS70	46	B10Q25G - B10Q25K B1025GH - B10Q25KH B1025GM - B10Q25KM	"Please indicate how often you did each activity on average over the last 12 months AND the average length of time you spent doing the activity on each occasion"	None, <once month, once a month, 2-3 times a month, once a week, 2-3 times a week, 4-5 times a week, 6 or more times a week Hours Minutes	Mowing the lawn, watering the lawn/garden, digging/shovelling/chopping wood, weeding/pruning, DIY (carpentry/home/car maintenance)	Past 12 months

Study	Age	Name	Question wording	Response scale(s)	Included activities	Timespan of recall
NCDS	50	$\begin{aligned} & \text { N8SCQ1G } \\ & \text { N8SCQ1H } \end{aligned}$	"How frequently you do each one...a) Work in the garden; b) Do DIY, home maintenance or car repairs;	Never, 1 x year, several times a year, monthly, weekly	Gardening, DIY	Past 12 months
BCS70	50	$\begin{aligned} & \text { CW1_Timeuse1_6_ } \\ & 1 \text { CW2_Timeuse_6 } \end{aligned}$	"How many hours have you been spending doing each of the following activities on a typical weekday in the last two weeks?"	Hours/day	Housework (e.g. cleaning, laundry, cooking, DIY)	Past 2 weeks
NSHD	$\begin{aligned} & 60- \\ & 64 \end{aligned}$	NGRG09 NGRW09 NGRS09 NGRP09 NDIY09 HGRG09 HGRW09 HGRS09 HGRP09 HDIYOO MGRG09 MGRW09 MRGS09 MGRP09	"Did you do any of the following activities in the last 12 months"	Yes, no Hours Minutes	Mowing the lawn - during the grass cutting season, watering the lawn/garden in the summer, digging/shovelling/chopping wood, weeding/pruning, DIY (carpentry, home or car maintenance)	Past 12 months
NCDS	62	$\begin{aligned} & \text { CW1_Timeuse1_6_ } \\ & 1 \text { CW2_Timeuse_6 } \end{aligned}$	"How many hours have you been spending doing each of the following activities on a typical weekday in the last two weeks?"	Hours/day	Housework (e.g. cleaning, laundry, cooking, DIY)	Past 2 weeks

Study	Age	Name	Question wording	Response scale(s)	Included activities of recall	
NSHD	74	CW1_Timeuse1_6_ 1 CW2_Timeuse_6	"How many hours have you been spending doing each of the following activities on a typical weekday in the last two weeks?"	Hours/day	Housework (e.g. cleaning, laundry, cooking, DIY)	Past 2
weeks						

11.5 Sedentary behaviour

Sedentary behaviour was measured across ages $3 y$ to $44 y$ with data collected across MCS, ALSPAC, BCS70, NCDS, and NSHD (Tables 11-13). Sedentary behaviours were centred on engagement with electronic devices including TV/video/DVD, computer or electronic gaming, general computer use, and internet use; with recall typically divided into weekdays and weekends.

Time spent watching TV, Table 11:

- MCS $3 y, 5 y, 7 y, 14 y, 17 y$, ALSPAC $3 y, 4 y, 5 y, 6 y, 8 y, 13 y, 16 y, 22 y, ~ B C S 705 y$, and $16 y$ have asked similar questions on frequency of TV consumption during childhood/early adulthood although questions vary slightly across ages (i.e. MCS 7: "On a normal week day during term time, how many hours does CM spend watching television, videos or DVDs"; ALSPAC 6: "How much time on average does s/he spend watching tv"; BCS70 5y: "Hours per day watched television Mon-Fri and Sat-Sun"). Responses are comparable in terms of duration (hours/day), with consumption differences examined from weekdays and weekends.
- ALSPAC 9y, BCS70 10y, and NCDS 11y ask similar questions on the frequency of TV watching (i.e. ALSPAC: "When she finishes school and returns home does she watch TV or video"; BCS70: "How often does your child do this in spare time: watch TV", NCDS: "Watching television after school hour") with responses comparable in frequency (ranging from never to always).
- BCS70 42y, 46y and NCDS 44y and NSHD 60-64y ask similar questions on TV consumption in mid- and later life (i.e. BCS70: "Time spent watching television, videos, DVDs, blue-ray (including on a computer)"; NCDS: "Time spent on average during the last year: watching TV or videos?"; NSHD, "How much time you spend on average during the last year watching TV or videos other than for work?") with responses comparable in duration (hour/day). However, NCDS and BCS70 split responses by
weekday and weekend, while NSHD did not specify and asked for an average over the past year.

Time spent using a computer / using games, Table 12:

- ALSPAC $8 y, 16 y, 22 y$, MCS $11 y, 14 y$, and BCS70 16y ask similar questions on the frequency of electronic gaming (i.e. MCS 14: "On a normal week day during term time, how many hours do you spend playing electronic games on a computer or games systems, such as Wii, Nintendo D-S, X-Box or PlayStation?"; ALSPAC: "On a day when she does any of the things below, about how long altogether does she usually spend on: computer game (any day)"; BCS70 16y: "After school yesterday, how long spent playing computer games?") with all responses comparable in duration (hours/day).

Time spent using the internet (Table 13):

- MCS 14y and ALSPAC $16 y$ ask similar questions on internet usage (i.e. MCS: "On a normal weekday during term time, how many hours do you spend using the internet?"; ALSPAC: "On a day when she does any of the things below, about how long altogether does she usually spend on: internet (for school/college), internet (nonschool/college)") with responses comparable in duration (hours/day).
- MCS 17y asked a question about time spent on social media ("On a normal weekday, how many hours do you spend on social networking or messaging sites or apps on the internet such as Facebook, Twitter, WhatsApp, Instagram and Snapchat?") but no other cohort study specifically focused on social media so this is not easily comparable to the internet-focused questions above.

Table 11. Duration of time spent sedentary (TV/video/DVD) -comparable items across childhood and adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
MCS	3	bmtvho	"Typically, how many hours a day does child watch television or videos?"	$\begin{aligned} & \text { Hours/ day: none, }<1,1+,<3 \text {, } \\ & 4+ \end{aligned}$	TV, video	Not specified
ALSPAC	3	kg272 kg276	"How much time on average does she spend each day watching tv"	Hours/day: none, <1, 1-2, 3+	TV	Weekday \& weekends
ALSPAC	4	kk331 kk331a kk332 kk332a kk333	"How much time on average does she spend each day watching tv"	Hours/day: none, <1, 1-2, 3+	TV	Weekday \& weekends
ALSPAC	5	km3063 km3073	"How much time on average does she spend each day watching tv"	Hours/day: none, <1, 1-2, 3+	TV	Weekday, weekends \& school holidays
ALSPAC	9	ku206	"When she finishes school and returns home does she watch TV or video"	Never, sometimes, usually, always	TV, video	Not specified
BCS70	5	e117 e118	"Hours per day watched television Mon-Fri and Sat-Sun"	Hours/day: Under 1, 1, 2, 3, 4, $5,6,7+$	TV	Weekday \& weekends
MCS	5	cmtvho	"On a normal weekday during term time, how many hours does CM spend watching TV, videos or DVDs"	Hours/day: none, <1, 1-<3, 3- $5,5-<7,7+$	TV, video, DVD	Weekday
ALSPAC	6	$\begin{aligned} & \text { kp5023 kp5043 } \\ & \text { kp5063 } \end{aligned}$	"How much time on average does she spend watching tv"	Hours/day: none, <1, 1-2, 3+	TV	Weekday, weekends \& school holidays

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
MCS	7	dmtvho	"On a normal weekday during term time, how many hours does CM spend watching television, videos or DVDs"	Hours/day: none, <1, 1-<3, 3- $5,5-<7,7+$	TV, video, DVD	Weekday
ALSPAC	8	kt1153 kt1173	"How much time on average does she spend watching TV?"	Hours/day: none, <1, 1-2, 3+	TV	Weekday, weekends \& school holidays
BCS70	10	M88	"How often does your child do this in spare time: watch TV"	Never/hardly, sometimes, often	TV	Not specified
MCS	11	EPTVHOOO	"On a normal weekday during term time, how many hours does CM spend watching television programmes or films? "	Hours/day: none, <1, 1<2,1-$<3,3-<5,5-<7,7+$	TV	Not specified
NCDS	11	N949	"Watching television after school hour"	Never/hardly ever, sometimes, often/nearly every day	TV	Weekday during term time
ALSPAC	13	ccq103	"How much time on average do you spend each day watching TV?"	Hours/day: none, <1, 1-2, 3+	TV	Weekday, weekends \& school holidays
MCS	14	FCTVHOOO	"On a normal weekday during term time, how many hours do you spend watching television programmes or films?"	Hours/day: none, <1, 1<2, 1- $<3,3-<5,5-<7,7+$		Weekday during term time
ALSPAC	16	tc3002-tc3005	"On a day when she does any of the things below, about how long altogether does she usually spend: TV (weekdays/ weekends) DVD (any day)	Hours/ day: never, <30m, $30 \mathrm{~m}-1,1-2,2-4,4-6,6+$	TV, DVD	Weekday during term time- specified in question
ALSPAC	16	Ccs1003	"How much time on average do you spend each day watching TV? "	Hours/day: none, <1, 1-2, 3+	TV	Weekday \& weekends
BCS70	16	f13 f14	"After school yesterday, how long spent watching TV/ watching video?"	Hours/day: none, <1, >1, >2, $>3,>4,>5$	TV, video	Weekday

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
NCDS	16	N2868	"Frequency of watching TV in spare time"	Would like to but don't have the chance, never, sometimes, often	TV	Not specified
MCS	17	GCTVHOOO	"On a normal weekday, how many hours do you spend watching programmes or films e.g. on a television or a device such as a laptop, tablet or smartphone? Please remember to include time spent watching DVDs, Blu-rays, etc."	Hours/day: none, <half, <1, 1- $\begin{aligned} & <2,2-<3,3-<5,5-<7,7-<10, \\ & 10+ \end{aligned}$	TV, DVD	Weekday
ALSPAC	22	YPB2060 YPB2070	"On an average weekday (weekend), how many hours per day do you: sit and watch TV?"	Hours/day: none, <1, 1-2, 3-4, $5-6,7-8,9+$	TV	Weekday \& weekends
BCS70	42	b9scq10a b9scq10b	"Time spent watching television, videos, DVDs, Blue-ray (including on a computer): a) on a typical weekday, b) on a typical weekend"	Hours/day: none, <1, 1-<3,3$<5,>5$	TV, video, DVD	Weekday \& weekends
NCDS	44	tvtime	"Time spent on average during the last year: watching TV or videos?"	Hours/day: none, <1, 1-2, 2-3, $3-4,>4$	TV	Not specified
BCS70	46	$\begin{aligned} & \text { B10Q12A } \\ & \text { B10Q12B } \end{aligned}$	"Time spent watching television, videos, DVDs, Blue-ray (including on a computer): a) on a typical weekday, b) on a typical weekend"	Hours/day: none, <1, 1-2, 2-3, $3-4,>4$	TV, video, DVD	Weekday \& weekends
NSHD	$60-$ 64	NVID09	"How much time you spend on average during the last year watching TV or videos other than for work?"	Hours/day: none, <1, 1-2, 2-3, 3-4, 4+	TV, video	Past year

Table 12. Duration of time spent sedentary (computer/electronic gaming) -comparable items across childhood and adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
ALSPAC	6	kq571	"How often does she play computer games"	Not at all, rarely, monthly, once a week, 2-5x a week, daily	Computer games	Not specified
ALSPAC	8	kt3018	"About how often does your child play computer games"	Not at all, rarely, monthly, once a week, 2-5x a week, daily	Computer games	Not specified
ALSPAC	8	$\begin{aligned} & \operatorname{ccd} 340 \\ & \operatorname{ccd} 341 \end{aligned}$	"How long do you spend playing computer games"	Hours/day: hardly at all, <1, 1hr, 1+	Computer games	Weekday, weekends \& school holidays
ALSPAC	9	ku536	"About how often does your child play computer games"	Not at all, < monthly, 1-3x month, 1 x week, $2-5 \mathrm{x}$ week, daily	Computer games	Not specified
ALSPAC	11	kw9016	"About how often does your child play computer games"	Not at all, < monthly, 1-3x month, 1 x week, $2-5 \mathrm{x}$ week, daily	Computer games	Not specified
MCS	11	ECQ05X00	"How often do you play games on a computer or games console, such as a Wii, Nintendo D-S, X-Box or Play Station, not at school?"	Never, < 1x a month, monthly, weekly, most days	Electronic games	Not specified

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
MCS	11	EPCOMP00	"On a normal weekday during term time, how many hours does CM spend playing electronic games on a computer or games console, such as Wii, Nintendo D-S, XBox or PlayStation?"	Hours/day: none, <1, 1<2,1- $<3,3-<5,5-<7,7+$	Electronic games	Weekday during term time
MCS	14	FCCOMH00	"On a normal weekday during term time, how many hours do you spend playing electronic games on a computer or games systems, such as Wii, Nintendo D-S, XBox or PlayStation? "	$\begin{aligned} & \text { Hours/day: }<30 \mathrm{~min}-1,1-<2 \text {, } \\ & 2-3,3-5,5-7,7+ \end{aligned}$	Electronic games	Weekday during term time
ALSPAC	16	tc3007	"On a day when she does any of the things below, about how long altogether does she usually spend on: computer game (any day)"	Hours/ day: never, <30m, $30 m-1,1-2,2-4,4-6,6+$	Computer games	Weekday during term time- specified in question
BCS70	16	f15	"After school yesterday, how long spent playing computer games?"	Hours/day: none, <1, >1, >2, $>3,>4,>5$	Computer games	Weekday
MCS	17	GCCOMH00	"On a normal weekday, how many hours do you spend playing games, including online games, on a computer, tablet, smartphone or games systems, such as Wii, Nintendo D-S, Xbox or PlayStation?"	Hours/day: none, <half, <1, $\begin{aligned} & 1-<2,2-<3,3-<5,5-<7,7-<10 \\ & 10+ \end{aligned}$	Electronic games	Weekday
ALSPAC	22	YPB2061 YPB2071	"On an average weekday (weekend), how many hours per day do you: play games on PC/laptop, games console?"	Hours/day: none, <1, 1-2, 3- $4,5-6,7-8,9+$	Electronic games	Weekday \& weekends

Table 13. Duration of time spent sedentary (Internet) -comparable items across childhood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
MCS	14	FCCOMH00	"On a normal weekday during term time, how many hours do you spend using the internet?"	Hours/day: none, $<1,1<2$, $1-<3,3-<5,5-<7,7+$	Internet (tablets, smartphones, computers, laptops)	Weekday during term time
ALSPAC	16	$\begin{aligned} & \mathrm{tc} 3008 \\ & \mathrm{tc} 3009 \end{aligned}$	"On a day when s/he does any of the things below, about how long altogether does s/he usually spend on: internet (for school/college), internet (nonschool/college)"	Hours/ day: never, <30m, $30 m-1,1-2,2-4,4-6,6+$	Internet	Weekday during term time- specified in question

Table 14. Duration of time spent sedentary (screen time) -comparable items across adulthood from selected CLOSER partner studies

Study	Age	Name	Question wording	Response scale	Included activities	Timespan of recall
MCS	19/20	CW3_SCREENTIM_1 CW3_SCREENTIM_2	"On a typical weekday in the last week, how much time have you spent in from of a screen? 1) For work or study, 2) Not for work or study"	Hours/day: none, $<1,1-<2,2-<4$, $4-<6,6-<8,8-<10,10+$	Computers, laptops, phones, TV	Weekday last week
BCS70	51	CW3_SCREENTIM_1 CW3_SCREENTIM_2	"On a typical weekday in the last week, how much time have you spent in from of a screen? 1) For work or study, 2) Not for work or study"	Hours/day: none, $<1,1-<2,2-<4$, $4-<6,6-<8,8-<10,10+$	Computers, laptops, phones, TV	Weekday last week
NCDS	62	CW3_SCREENTIM_1 CW3_SCREENTIM_2	"On a typical weekday in the last week, how much time have you spent in from of a screen? 1) For work or study, 2) Not for work or study"	Hours/day: none, <1, 1-<2, 2-<4, $4-<6,6-<8,8-<10,10+$	Computers, laptops, phones, TV	Weekday last week
NSHD	74/75	CW3_SCREENTIM_1 CW3_SCREENTIM_2	"On a typical weekday in the last week, how much time have you spent in from of a screen? 1) For work or study, 2) Not for work or study"	Hours/day: none, <1, 1-<2, 2-<4, $4-<6,6-<8,8-<10,10+$	Computers, laptops, phones, TV	Weekday last week

12. Conclusion

This guide has outlined the self-report physical activity measures available (as of February 2023) across five British birth cohort studies (NSHD, NCDS, BCS70, ALSPAC, and MCS), and one British panel study (UKHLS), with additional discussion on the comparability of the measures captured by the birth cohort studies. Measures were categorised into domains (including leisure time, occupational, active travel, domestic activities, and sedentary behaviour), identifying potential comparability on responses by frequency, duration, and intensity. A comprehensive tabulation of the measures is available as an electronic appendix. This is fully searchable and can be sorted by a number of different variables including study, sweep, year, age of study member, subject, informant, administrator, data collection method, questionnaire, question, response scale, physical activity domain, and whether it captured frequency, duration, or intensity.

This guide described the available physical activity variables within each longitudinal study and highlighted comparable variables across studies. Some domains, such as leisure time, were consistently measured across multiple studies at overlapping ages; other domains were more sparsely measured making comparability across longitudinal studies difficult. As well as a resource to help facilitate use of existing physical activity data, it is hoped that this guide also serves to inform assessment decisions in future study data collections.

References

1. Johnson, W., et al., How Has the Age-Related Process of Overweight or Obesity Development Changed over Time? Co-ordinated Analyses of Individual Participant Data from Five United Kingdom Birth Cohorts. PLoS Med, 2015. 12(5): p. e1001828; discussion e1001828.
2. Collaboration, N.C.D.R.F., Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet, 2016. 387(10026): p. 1377-1396.
3. Foresight, Tackling Obesities: Future Choices - Project Report.
4. Rodriguez Manas, L., [The World Health Organization report on ageing and health: A gift for the geriatrics community]. Rev Esp Geriatr Gerontol, 2016. 51(5): p. 249-51.
5. Foresight, Future of an Ageing Population.
6. Das, P. and R. Horton, Physical activity-time to take it seriously and regularly. Lancet, 2016. 388(10051): p. 1254-5.
7. Physical Activity Guidelines for Americans.
8. Young, D.R., et al., Sedentary Behavior and Cardiovascular Morbidity and Mortality: A Science Advisory From the American Heart Association. Circulation, 2016. 134(13): p. e262-79.
9. Caspersen, C.J., K.E. Powell, and G.M. Christenson, Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports (Washington, D.C. : 1974), 1985. 100(2): p. 126-31.
10. Intille, S.S., et al., New horizons in sensor development. Med Sci Sports Exerc, 2012. 44(1 Suppl 1): p. S24-31.
11. Ainsworth, B., et al., The Current State of Physical Activity Assessment Tools. Progress in Cardiovascular Diseases, 2015. 57(4): p. 387-395.
12. Pate, R.R., J.R. O'Neill, and F. Lobelo, The Evolving Definition of \"Sedentary\". Exercise and Sport Sciences Reviews, 2008. 36(4): p. 173-178.
13. Morris, J.N., et al., CORONARY HEART-DISEASE AND PHYSICAL ACTIVITY OF WORK. The Lancet, 1953. 262(6795): p. 1053-1057.
14. Bennett, D.A., et al., Association of Physical Activity With Risk of Major Cardiovascular Diseases in Chinese Men and Women. JAMA Cardiology, 2017. 2(12): p. 1349-1349.
15. Li, J., et al., Physical Activity and Risk of Cardiovascular Disease-A Meta-Analysis of Prospective Cohort Studies. International Journal of Environmental Research and Public Health, 2012. 9(2): p. 391-407.
16. Nocon, M., et al., Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. European Journal of Cardiovascular Prevention \& Rehabilitation, 2008. 15(3): p. 239-246.
17. Wilmot, E.G., et al., Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia, 2012. 55(11): p. 28952905.
18. Kyu, H.H., et al., Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response metaanalysis for the Global Burden of Disease Study 2013. BMJ (Clinical research ed.), 2016. 354: p. i3857-i3857.
19. Lee, J., et al., Public health impact of risk factors for physical inactivity in adults with rheumatoid arthritis. Arthritis Care Res (Hoboken), 2012. 64(4): p. 488-93.
20. Cartee, G.D., et al., Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab, 2016. 23(6): p. 1034-1047.
21. Moreira-Silva, I., et al., The Effects of Workplace Physical Activity Programs on Musculoskeletal Pain: A Systematic Review and Meta-Analysis. Workplace Health Saf, 2016. 64(5): p. 210-22.
22. Hamer, M. and Y. Chida, Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychological medicine, 2009. 39(1): p. 3-11.
23. Schuch, F.B.V.D.F.J.R.W.P.B.S.E.H.D.A.L.D.F.M.C.C.A.F., et al., Physical Activity and Incident Depression: A Meta-Analysis of Prospective Cohort Studies. American Journal of Psychiatry, 2018. (in press)(7): p. 631-648.
24. Schuch, F.B., et al., Physical activity protects from incident anxiety: A meta-analysis of prospective cohort studies. Depression and Anxiety, 2019.
25. Heath, G.W., et al., Evidence-based intervention in physical activity: lessons from around the world. The Lancet, 2012. 380(9838): p. 272-281.
26. Richmond, R.C., et al., Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med, 2014. 11(3): p. e1001618.
27. Csizmadi, I., et al., Hours spent and energy expended in physical activity domains: Results from The Tomorrow Project cohort in Alberta, Canada. International Journal of Behavioral Nutrition and Physical Activity, 2011. 8(1): p. 110-110.
28. Dong, L., G. Block, and S. Mandel, Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study. International Journal of Behavioral Nutrition and Physical Activity, 2004. 1(1): p. 4-4.
29. Bauman, A.E., et al., Correlates of physical activity: why are some people physically active and others not? Lancet, 2012. 380(9838): p. 258-71.
30. Beenackers, M.A., et al., Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act, 2012. 9: p. 116.
31. Blair, S.N., M.J. LaMonte, and M.Z. Nichaman, The evolution of physical activity recommendations: how much is enough?The American Journal of Clinical Nutrition, 2004. 79(5): p. 913S-920S.
32. Arem, H., et al., Leisure Time Physical Activity and Mortality. JAMA Internal Medicine, 2015. 175(6): p. 959-959.
33. Moore, S.C., et al., Leisure Time Physical Activity of Moderate to Vigorous Intensity and Mortality: A Large Pooled Cohort Analysis. PLoS Medicine, 2012. 9(11): p. e1001335-e1001335.
34. Samitz, G., M. Egger, and M. Zwahlen, Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. International Journal of Epidemiology, 2011. 40(5): p. 1382-1400.
35. Aune, D., et al., Physical activity and the risk of type 2 diabetes: a systematic review and doseresponse meta-analysis. European Journal of Epidemiology, 2015. 30(7): p. 529-542.
36. Li, J., A. Loerbroks, and P. Angerer, Physical activity and risk of cardiovascular disease. Current Opinion in Cardiology, 2013. 28(5): p. 575-583.
37. Liu, L., et al., Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies. British journal of sports medicine, 2016. 50(6): p. 372-8.
38. Wu, Y., D. Zhang, and S. Kang, Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Research and Treatment, 2013. 137(3): p. 869-882.
39. Blair, S.N., et al., Influences of Cardiorespiratory Fitness and Other Precursors on Cardiovascular Disease and All-Cause Mortality in Men and Women. JAMA: The Journal of the American Medical Association, 1996. 276(3): p. 205-205.
40. Lee, P.H., et al., Validity of the international physical activity questionnaire short form (IPAQSF): A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 2011. 8(1): p. 115-115.
41. Myers, J., et al., Cardiorespiratory Fitness and Reclassification of Risk for Incidence of Heart Failure. Circulation: Heart Failure, 2017. 10(6).
42. Bauman, A., et al., Cross-national comparisons of socioeconomic differences in the prevalence of leisure-time and occupational physical activity, and active commuting in six Asia-Pacific countries. Journal of Epidemiology \& Community Health, 2011. 65(1): p. 35-43.
43. Beenackers, M.A., et al., Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 2012. 9(1): p. 116-116.
44. van Uffelen, J.G.Z., et al., Occupational Sitting and Health Risks: A Systematic Review. American Journal of Preventive Medicine, 2010. 39(4): p. 379-388.
45. Holtermann, A., et al., The physical activity paradox: six reasons why occupational physical activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. British journal of sports medicine, 2018. 52(3): p. 149-150.
46. Holtermann, A., et al., The health paradox of occupational and leisure-time physical activity. British Journal of Sports Medicine, 2012. 46(4): p. 291-295.
47. Holtermann, A., et al., The health paradox of occupational and leisure-time physical activity. Br J Sports Med, 2012. 46(4): p. 291-5.
48. Holtermann, A., et al., The physical activity paradox: six reasons why occupational physical activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. Br J Sports Med, 2018. 52(3): p. 149-150.
49. Warburton, D.E.R. and S.S.D. Bredin, Health benefits of physical activity. Current Opinion in Cardiology, 2017. 32(5): p. 541-556.
50. Pizot, C., et al., Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies. European Journal of Cancer, 2016. 52: p. 138-154.
51. Buckley, J.P., et al., The sedentary office: an expert statement on the growing case for change towards better health and productivity. Br J Sports Med, 2015. 49(21): p. 1357-62.
52. Clemes, S.A., S.E. O'Connell, and C.L. Edwardson, Office Workers'Objectively Measured Sedentary Behavior and Physical Activity During and Outside Working Hours. Journal of Occupational and Environmental Medicine, 2014. 56(3): p. 298-303.
53. Ryan, C.G., et al., Sitting patterns at work: objective measurement of adherence to current recommendations. Ergonomics, 2011. 54(6): p. 531-538.
54. Active Lives Survey 2017/2018: Year 3 Technical Note. 2019, Ipsos MORI: Social Research Institute
55. Laverty, A.A., et al., Active travel to work and cardiovascular risk factors in the United Kingdom. Am J Prev Med, 2013. 45(3): p. 282-8.
56. Mueller, N., et al., Health impact assessment of active transportation: A systematic review. Prev Med, 2015. 76: p. 103-14.
57. Hamer, M. and Y. Chida, Active commuting and cardiovascular risk: A meta-analytic review. Preventive Medicine, 2008. 46(1): p. 9-13.
58. Saunders, L.E., et al., What Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. PLoS ONE, 2013. 8(8): p. e69912-e69912.
59. Tainio, M., et al., Can air pollution negate the health benefits of cycling and walking? Preventive Medicine, 2016. 87: p. 233-236.
60. Murphy, M.H., et al., Does doing housework keep you healthy? The contribution of domestic physical activity to meeting current recommendations for health. BMC Public Health, 2013. 13(1): p. 966-966.
61. Besson, H., et al., Relationship between Subdomains of Total Physical Activity and Mortality. Medicine \& Science in Sports \& Exercise, 2008. 40(11): p. 1909-1915.
62. Stamatakis, E., M. Hamer, and D.A. Lawlor, Physical Activity, Mortality, and Cardiovascular Disease: Is Domestic Physical Activity Beneficial?: The Scottish Health Survey--1995, 1998, and 2003. American Journal of Epidemiology, 2009. 169(10): p. 1191-1200.
63. Bellavia, A., et al., Physical activity and mortality in a prospective cohort of middle-aged and elderly men -- a time perspective. International Journal of Behavioral Nutrition and Physical Activity, 2013. 10(1): p. 94-94.
64. Ekelund, U., et al., Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet, 2016. 388(10051): p. 1302-1310.
65. Patterson, R., et al., Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response metaanalysis. European Journal of Epidemiology, 2018. 33(9): p. 811-829.
66. Tremblay, M.S., et al., Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 2017. 14(1): p. 75-75.
67. Biswas, A., et al., Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med, 2015. 162(2): p. 123-32.
68. Mansoubi, M., et al., The relationship between sedentary behaviour and physical activity in adults: A systematic review. Preventive Medicine, 2014. 69: p. 28-35.
69. Kohl, H.W., 3rd, et al., The pandemic of physical inactivity: global action for public health. Lancet, 2012. 380(9838): p. 294-305.
70. Biswas, A., et al., Sedentary Time and Its Association With Risk for Disease Incidence, Mortality, and Hospitalization in Adults. Annals of Internal Medicine, 2015. 162(2): p. 123-123.
71. O'Donoghue, G., et al., A systematic review of correlates of sedentary behaviour in adults aged 18-65 years: a socio-ecological approach. BMC Public Health, 2016. 16: p. 163.
72. (WHO), W.H.O., 2013-2020 GLOBAL ACTION PLAN FOR THE PREVENTION AND CONTROL OF NONCOMMUNICABLE DISEASES. 2013.
73. Guthold, R., et al., Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health, 2018. 6(10): p. e1077-e1086.
74. Troiano, R.P., et al., Evolution of accelerometer methods for physical activity research. British journal of sports medicine, 2014. 48(13): p. 1019-23.
75. van Poppel, M.N.M., et al., Physical Activity Questionnaires for Adults. Sports Medicine, 2010. 40(7): p. 565-600.
76. Tucker, J.M., G.J. Welk, and N.K. Beyler, Physical Activity in U.S. Adults. American Journal of Preventive Medicine, 2011. 40(4): p. 454-461.
77. Welk, G.J., et al., Calibration of Self-Report Measures of Physical Activity and Sedentary Behavior. Med Sci Sports Exerc, 2017. 49(7): p. 1473-1481.
78. Hills, A.P., N. Mokhtar, and N.M. Byrne, Assessment of physical activity and energy expenditure: an overview of objective measures. Frontiers in nutrition, 2014. 1: p. 5-5.
79. Trost, S.G., K.L. Mclver, and R.R. Pate, Conducting Accelerometer-Based Activity Assessments in Field-Based Research. Medicine \& Science in Sports \& Exercise, 2005. 37(Supplement): p. S531-S543.
80. Bai, Y., et al., Comparison of Consumer and Research Monitors under Semistructured Settings. Medicine \& Science in Sports \& Exercise, 2016. 48(1): p. 151-158.
81. Chaix, B., et al., Combining sensor tracking with a GPS-based mobility survey to better measure physical activity in trips: public transport generates walking. Int J Behav Nutr Phys Act, 2019. 16(1): p. 84.
82. Lee, J.-M., Y. Kim, and G.J. Welk, Validity of Consumer-Based Physical Activity Monitors. Medicine \& Science in Sports \& Exercise, 2014. 46(9): p. 1840-1848.
83. Care, D.o.H.a.S., UK Chief Medical Officers' Physical Activity Guidelines 2019.
84. Golubic, R., et al., Levels of physical activity among a nationally representative sample of people in early old age: results of objective and self-reported assessments. International Journal of Behavioral Nutrition and Physical Activity, 2014. 11(1): p. 58-58.
85. Griffiths, L.J., et al., How active are our children? Findings from the Millennium Cohort Study. BMJ open, 2013. 3(8): p. e002893-e002893.
86. Silverwood, R.J., et al., Characterizing Longitudinal Patterns of Physical Activity in MidAdulthood Using Latent Class Analysis: Results From a Prospective Cohort Study. American Journal of Epidemiology, 2011. 174(12): p. 1406-1415.
87. Mawditt, C., et al., The clustering of health-related behaviours in a British population sample: Testing for cohort differences. Preventive Medicine, 2016. 88: p. 95-107.
88. Elhakeem, A., et al., Motor performance in early life and participation in leisure-time physical activity up to age 68 years. Paediatric and Perinatal Epidemiology, 2018. 32(4): p. 327-334.
89. Pinto Pereira, S.M., L. Li, and C. Power, Early-Life Predictors of Leisure-Time Physical Inactivity in Midadulthood: Findings From a Prospective British Birth Cohort. American Journal of Epidemiology, 2014. 180(11): p. 1098-1108.
90. Bann, D., et al., Physical Activity Across Adulthood in Relation to Fat and Lean Body Mass in Early Old Age: Findings From the Medical Research Council National Survey of Health and Development, 1946-2010. American Journal of Epidemiology, 2014. 179(10): p. 1197-1207.
91. Richards, M., R. Hardy, and M.E.J. Wadsworth, Does active leisure protect cognition? Evidence from a national birth cohort. Social Science \& Medicine, 2003. 56(4): p. 785-792.
92. Pinto Pereira, S.M., M.-C. Geoffroy, and C. Power, Depressive Symptoms and Physical Activity During 3 Decades in Adult Life. JAMA Psychiatry, 2014. 71(12): p. 1373-1373.
93. Dodds, R., et al., Physical activity levels across adult life and grip strength in early old age: updating findings from a British birth cohort. Age and ageing, 2013. 42(6): p. 794-8.
94. Wadsworth, M., et al., Cohort profile: The 1946 National Birth Cohort (MRC National Survey of Health and Development). International Journal of Epidemiology, 2006. 35(1): p. 49-54.
95. Kuh, D., et al., Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. Int J Epidemiol, 2011. 40(1): p. e1-9.
96. Kuh, D., et al., The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. Eur J Epidemiol, 2016. 31(11): p. 1135-1147.
97. Taylor, H.L., et al., A questionnaire for the assessment of leisure time physical activities. J Chronic Dis, 1978. 31(12): p. 741-55.
98. Day, N., et al., EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer, 1999. 80 Suppl 1: p. 95-103.
99. Dodds, R., et al., Physical activity levels across adult life and grip strength in early old age: updating findings from a British birth cohort. Age Ageing, 2013. 42(6): p. 794-8.
100. Hannam, K., et al., A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: findings from a multi-cohort study. Osteoporosis International, 2017. 28(3): p. 1001-1011.
101. Power, C. and J. Elliott, Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol, 2006. 35(1): p. 34-41.
102. Elliott, J. and P. Shepherd, Cohort profile: 1970 British Birth Cohort (BCS70). Int J Epidemiol, 2006. 35(4): p. 836-43.
103. Boyd, A., et al., Cohort Profile: The 'Children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children (ALSPAC). International Journal of Epidemiology, 2013. 42: p. 111-127.
104. Fraser, A., et al., Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of Epidemiology, 2013. 42: p. 97-110.
105. Connelly, R. and L. Platt, Cohort profile: UK Millennium Cohort Study (MCS). Int J Epidemiol, 2014. 43(6): p. 1719-25.

[^0]: *participation in individual activities was not recorded

